找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Second International Alessandro Crimi,Bjoern Menze,Heinz Hand

[復(fù)制鏈接]
樓主: 退縮
11#
發(fā)表于 2025-3-23 13:22:14 | 只看該作者
Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation employed here in the setting of brain tumors. Inspired by deep residual networks which won the ImageNet ILSVRC 2015 classification challenge, the FCR-NN combines optimization gains from residual identity mappings with a fully convolutional architecture for image segmentation that efficiently accoun
12#
發(fā)表于 2025-3-23 16:21:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:41 | 只看該作者
Brain Tumor Segmantation Using Random Forest Trained on Iteratively Selected Patientsining the RDF in each iteration some patients are added to the training data using some heuristics approach instead of randomly selected training dataset. Feature extraction and selection were applied to select the most discriminative features for training our Random Decision forest on. The post-pro
14#
發(fā)表于 2025-3-23 22:44:48 | 只看該作者
15#
發(fā)表于 2025-3-24 03:58:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:46:37 | 只看該作者
Lifted Auto-Context Forests for Brain Tumour Segmentationt and refined via successive layers of Decision Forests (DFs). Specifically, we make the following contributions: (1) . via an efficient node-splitting criterion based on hold-out estimates, (2) . at a tree-level, thereby yielding shallow discriminative ensembles trained orders of magnitude faster,
18#
發(fā)表于 2025-3-24 18:17:21 | 只看該作者
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain InjuriesSecond International
19#
發(fā)表于 2025-3-24 20:17:24 | 只看該作者
https://doi.org/10.1007/978-3-319-92132-7ality of registration validation and the variety of data being made available. By including addition features such as expert tumour segmentations, the database will appeal to a broader spectrum of image processing researchers and be useful for validating a wider range of techniques for image-guided
20#
發(fā)表于 2025-3-25 00:56:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五大连池市| 漳浦县| 临漳县| 江阴市| 南溪县| 昌平区| 沿河| 四平市| 太保市| 蓝山县| 南汇区| 宿松县| 昭通市| 崇明县| 黑龙江省| 丹寨县| 横峰县| 晋中市| 陇南市| 万盛区| 民丰县| 内江市| 习水县| 石景山区| 伊宁市| 集安市| 苍南县| 九寨沟县| 深水埗区| 马鞍山市| 石嘴山市| 高密市| 蓬安县| 民乐县| 黑龙江省| 镇江市| 洪雅县| 云浮市| 上林县| 赤壁市| 施甸县|