找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bousfield Classes and Ohkawa‘s Theorem; Nagoya, Japan, Augus Takeo Ohsawa,Norihiko Minami Conference proceedings 2020 Springer Nature Singa

[復(fù)制鏈接]
查看: 40681|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:15:27 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bousfield Classes and Ohkawa‘s Theorem
期刊簡稱Nagoya, Japan, Augus
影響因子2023Takeo Ohsawa,Norihiko Minami
視頻videohttp://file.papertrans.cn/191/190090/190090.mp4
發(fā)行地址Is the world‘s first volume that focuses on the surprising and mysterious Ohkawa‘s theorem: the Bousfield classes form a set.Starts with Ohkawa‘s theorem, stated in the universal stable homotopy categ
學(xué)科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Bousfield Classes and Ohkawa‘s Theorem; Nagoya, Japan, Augus Takeo Ohsawa,Norihiko Minami Conference proceedings 2020 Springer Nature Singa
影響因子.This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa‘s theorem: the Bousfield classes in the stable homotopy category .SH. form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa‘s theorem, evolving naturally with a chain of motivational questions: .?Ohkawa‘s theorem states that the Bousfield classes of the stable homotopy category .SH. surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning?.The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves .D.qc.(.X.) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa‘s theorem but by his own theorem with Smithin the triangulated subcategory .SH.c., consisting of compact objects in .SH.. Now?the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in .SH., are there analogues for the Morel-Voevodsky A.1.-stable homotopy category .SH.(.k.
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Bousfield Classes and Ohkawa‘s Theorem影響因子(影響力)




書目名稱Bousfield Classes and Ohkawa‘s Theorem影響因子(影響力)學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem網(wǎng)絡(luò)公開度




書目名稱Bousfield Classes and Ohkawa‘s Theorem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem被引頻次




書目名稱Bousfield Classes and Ohkawa‘s Theorem被引頻次學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem年度引用




書目名稱Bousfield Classes and Ohkawa‘s Theorem年度引用學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem讀者反饋




書目名稱Bousfield Classes and Ohkawa‘s Theorem讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:17 | 只看該作者
: The , of State-Family Civilization, in a similar manner as Dwyer and Palmieri did in Dwyer and Palmieri (Proc. Am. Math. Soc. 129(3):881–886, [.]). We also consider a relation between Bousfield classes of finite objects and supports of them on a collection of objects.
地板
發(fā)表于 2025-3-22 08:31:24 | 只看該作者
5#
發(fā)表于 2025-3-22 10:53:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:53:17 | 只看該作者
7#
發(fā)表于 2025-3-22 19:29:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:02:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措美县| 会同县| 舞钢市| 辽阳市| 华池县| 呼伦贝尔市| 太仓市| 南雄市| 镇沅| 萝北县| 红河县| 长汀县| 崇左市| 泰和县| 江山市| 乳山市| 池州市| 定结县| 沂水县| 康乐县| 汕头市| 通化县| 扶风县| 石楼县| 宿迁市| 丰镇市| 正镶白旗| 临洮县| 屏东市| 洛南县| 沾益县| 东乡族自治县| 香河县| 安新县| 中山市| 昌平区| 南汇区| 抚顺市| 建昌县| 五台县| 曲沃县|