找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bousfield Classes and Ohkawa‘s Theorem; Nagoya, Japan, Augus Takeo Ohsawa,Norihiko Minami Conference proceedings 2020 Springer Nature Singa

[復(fù)制鏈接]
查看: 40688|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:15:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bousfield Classes and Ohkawa‘s Theorem
期刊簡(jiǎn)稱Nagoya, Japan, Augus
影響因子2023Takeo Ohsawa,Norihiko Minami
視頻videohttp://file.papertrans.cn/191/190090/190090.mp4
發(fā)行地址Is the world‘s first volume that focuses on the surprising and mysterious Ohkawa‘s theorem: the Bousfield classes form a set.Starts with Ohkawa‘s theorem, stated in the universal stable homotopy categ
學(xué)科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Bousfield Classes and Ohkawa‘s Theorem; Nagoya, Japan, Augus Takeo Ohsawa,Norihiko Minami Conference proceedings 2020 Springer Nature Singa
影響因子.This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa‘s theorem: the Bousfield classes in the stable homotopy category .SH. form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa‘s theorem, evolving naturally with a chain of motivational questions: .?Ohkawa‘s theorem states that the Bousfield classes of the stable homotopy category .SH. surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning?.The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves .D.qc.(.X.) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa‘s theorem but by his own theorem with Smithin the triangulated subcategory .SH.c., consisting of compact objects in .SH.. Now?the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in .SH., are there analogues for the Morel-Voevodsky A.1.-stable homotopy category .SH.(.k.
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Bousfield Classes and Ohkawa‘s Theorem影響因子(影響力)




書目名稱Bousfield Classes and Ohkawa‘s Theorem影響因子(影響力)學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem網(wǎng)絡(luò)公開度




書目名稱Bousfield Classes and Ohkawa‘s Theorem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem被引頻次




書目名稱Bousfield Classes and Ohkawa‘s Theorem被引頻次學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem年度引用




書目名稱Bousfield Classes and Ohkawa‘s Theorem年度引用學(xué)科排名




書目名稱Bousfield Classes and Ohkawa‘s Theorem讀者反饋




書目名稱Bousfield Classes and Ohkawa‘s Theorem讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:17 | 只看該作者
: The , of State-Family Civilization, in a similar manner as Dwyer and Palmieri did in Dwyer and Palmieri (Proc. Am. Math. Soc. 129(3):881–886, [.]). We also consider a relation between Bousfield classes of finite objects and supports of them on a collection of objects.
地板
發(fā)表于 2025-3-22 08:31:24 | 只看該作者
5#
發(fā)表于 2025-3-22 10:53:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:53:17 | 只看該作者
7#
發(fā)表于 2025-3-22 19:29:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:02:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华亭县| 宕昌县| 定边县| 开原市| 资溪县| 潢川县| 濮阳市| 泊头市| 山阳县| 龙游县| 日土县| 蓬莱市| 山西省| 兴安县| 原平市| 德庆县| 武陟县| 合阳县| 浑源县| 交城县| 常宁市| 大悟县| 临漳县| 龙陵县| 玉田县| 宜都市| 礼泉县| 台东县| 莆田市| 康定县| 措美县| 河间市| 兴隆县| 滕州市| 富民县| 黄平县| 泸水县| 开原市| 固阳县| 松原市| 吉安市|