找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Time-Critical Mobility Forecasting; From Raw Data to Tra George A. Vouros,Gennady Andrienko,David Scarlatti Book 202

[復(fù)制鏈接]
樓主: 閘門
31#
發(fā)表于 2025-3-27 00:32:24 | 只看該作者
The Perspective on Mobility Data from the Aviation Domainves. In order to do this, new concepts of operations are arising, such as trajectory-based operations, which open many new possibilities in terms of system predictability, paving the way for the application of big data techniques in the Aviation Domain. This chapter presents the state of the art in these matters.
32#
發(fā)表于 2025-3-27 04:54:39 | 只看該作者
Event Processing for Maritime Situational Awareness: a formal, computational framework for composite maritime event recognition, based on the Event Calculus, and an industry-strong maritime anomaly detection service, capable of processing daily real-world data volumes.
33#
發(fā)表于 2025-3-27 05:20:46 | 只看該作者
https://doi.org/10.1007/978-1-349-25536-8 with the detection of threats and abnormal activities. The maritime use cases and scenarios are geared on fishing activities monitoring, aligning with the European Union Maritime Security Strategy. Six scenarios falling under three use cases are presented together with maritime situational indicato
34#
發(fā)表于 2025-3-27 09:28:52 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:46 | 只看該作者
36#
發(fā)表于 2025-3-27 20:10:31 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:17:09 | 只看該作者
Understanding C# and the .NET Frameworkseveral tasks, such as data deduplication, record linkage, and data integration. Existing LD frameworks facilitate data integration tasks over multidimensional data. However, limited work has focused on spatial or spatiotemporal LD, which is typically much more processing-intensive due to the comple
39#
發(fā)表于 2025-3-28 09:09:54 | 只看該作者
40#
發(fā)表于 2025-3-28 10:54:50 | 只看該作者
Women, Violence and Male Power,t pillar is the problem formulation regarding two complementary tasks, namely the . (FLP) and the . (TP). The second pillar tackles the issue of effectiveness, efficiency, and scalabilityfor the corresponding predictive analytics models for big fleets of moving objects. Finally, the third pillar tak
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于都县| 浦城县| 松江区| 富源县| 响水县| 龙陵县| 临沭县| 芜湖县| 越西县| 宁化县| 湛江市| 凌海市| 普兰县| 辽阳县| 弋阳县| 隆昌县| 福安市| 信丰县| 柘城县| 吉木乃县| 多伦县| 宁国市| 吉隆县| 襄垣县| 石狮市| 荆州市| 革吉县| 扶绥县| 博客| 齐河县| 江都市| 四平市| 东宁县| 辉南县| 清苑县| 于田县| 乐亭县| 航空| 南开区| 太谷县| 大竹县|