找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Time-Critical Mobility Forecasting; From Raw Data to Tra George A. Vouros,Gennady Andrienko,David Scarlatti Book 202

[復(fù)制鏈接]
樓主: 閘門
11#
發(fā)表于 2025-3-23 11:18:53 | 只看該作者
The , Big Data Architecture for Mobility Analyticssources, this chapter presents the . architecture: Denoting “difference,” . emphasizes on the different processing requirements from loosely coupled components, which serve intertwined processing purposes, forming processing pipelines. The . architecture, being a generic architectural paradigm for r
12#
發(fā)表于 2025-3-23 15:45:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:41:26 | 只看該作者
https://doi.org/10.1007/978-1-4842-5380-9owledge. We describe four case studies in which distinct kinds of knowledge have been derived from trajectories of vessels and airplanes and related spatial and temporal data by human analytical reasoning empowered by interactive visual interfaces combined with computational operations.
14#
發(fā)表于 2025-3-23 23:54:51 | 只看該作者
15#
發(fā)表于 2025-3-24 05:42:35 | 只看該作者
https://doi.org/10.1007/978-1-349-22595-8 as from individual components and pipelines. The chapter presents the datAcron integrated system as a specific instantiation of the . architecture, aiming to satisfy requirements for big data mobility analytics, exploiting real-world mobility data for performing real-time and batch analysis tasks.
16#
發(fā)表于 2025-3-24 08:46:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:59 | 只看該作者
Modeling Mobility Data and Constructing Large Knowledge Graphs to Support Analytics: The datAcron Onrajectories, at multiple, interlinked levels of detail. In addition, we show that this ontology supports data transformations that are required for performing advanced analytics tasks, such as visual analytics, and we present use-case scenarios in the Air Traffic Management and maritime domains.
18#
發(fā)表于 2025-3-24 15:10:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:32:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:15:03 | 只看該作者
https://doi.org/10.1007/978-1-349-25536-8us sources for maritime surveillance is finally described, gathering 13 sources. This chapter concludes on the generation of specific datasets to be used for algorithms evaluation and comparison purposes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
楚雄市| 和政县| 法库县| 根河市| 五家渠市| 乐平市| 汾西县| 叙永县| 阿瓦提县| 舞阳县| 连云港市| 白水县| 遵义市| 资中县| 湘潭市| 舟曲县| 常州市| 南平市| 内乡县| 仪征市| 循化| 万年县| 兴宁市| 西宁市| 清新县| 静乐县| 龙南县| 当阳市| 孟连| 忻州市| 余江县| 郴州市| 绍兴县| 沙雅县| 贵州省| 栾城县| 威信县| 临西县| 亳州市| 塔河县| 北流市|