找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data 2.0 Processing Systems; A Systems Overview Sherif Sakr Book 2020Latest edition The Editor(s) (if applicable) and The Author(s), un

[復(fù)制鏈接]
樓主: CLOG
11#
發(fā)表于 2025-3-23 13:01:54 | 只看該作者
M. S. von Haken,H. P. Adams,K. Rieke new data-generating scenarios, such as the ubiquity of mobile devices, location services, and sensor pervasiveness. In general, stream processing engines enable a large class of applications in which data are produced from various sources and are moved asynchronously to processing nodes. Thus, stre
12#
發(fā)表于 2025-3-23 14:45:23 | 只看該作者
13#
發(fā)表于 2025-3-23 19:47:29 | 只看該作者
Jingyang Tang,Jinglu Ai,R. Loch Macdonaldmodern life including the way we live, socialize, think, work, do business, conduct research, and govern society. In this chapter, we provide an outlook for various applications to exploit big data technologies in current and future application domains. In addition, we highlight some of the open cha
14#
發(fā)表于 2025-3-24 02:07:38 | 只看該作者
research and development.Describes an entire range of engine.This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and indus
15#
發(fā)表于 2025-3-24 03:03:16 | 只看該作者
16#
發(fā)表于 2025-3-24 09:12:56 | 只看該作者
Frédéric Saudou,Sandrine Humbertth the analysis of multi-structured data from other sources such as clickstreams, call detail records, application logs, or text from call center records. This chapter provides an overview of various general-purpose big data processing systems which empower its user to develop various big data processing jobs for different application domains.
17#
發(fā)表于 2025-3-24 12:11:45 | 只看該作者
Jingyang Tang,Jinglu Ai,R. Loch Macdonaldok for various applications to exploit big data technologies in current and future application domains. In addition, we highlight some of the open challenges which addressing them will further improve the power of big data technologies.
18#
發(fā)表于 2025-3-24 14:53:09 | 只看該作者
Introduction,rvasive availability and usage of Internet technology and applications. The Big Data term has been coined under the tremendous and explosive growth of the world digital data which is generated from various sources and in different formats. This chapter gives an overview of the main concepts, sources, and technologies for the big data phenomena.
19#
發(fā)表于 2025-3-24 19:01:27 | 只看該作者
General-Purpose Big Data Processing Systems,th the analysis of multi-structured data from other sources such as clickstreams, call detail records, application logs, or text from call center records. This chapter provides an overview of various general-purpose big data processing systems which empower its user to develop various big data processing jobs for different application domains.
20#
發(fā)表于 2025-3-25 02:58:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
疏附县| 宁波市| 洪雅县| 西吉县| 富裕县| 都匀市| 湖州市| 修文县| 徐闻县| 福鼎市| 金坛市| 彭山县| 永康市| 仪陇县| 东港市| 弥勒县| 大连市| 射洪县| 长春市| 金溪县| 仲巴县| 霸州市| 龙口市| 改则县| 称多县| 襄汾县| 霍邱县| 思南县| 石家庄市| 彭山县| 大竹县| 高陵县| 峨山| 温宿县| 吐鲁番市| 奉贤区| 卢氏县| 桃江县| 五华县| 大英县| 洪江市|