找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data 2.0 Processing Systems; A Systems Overview Sherif Sakr Book 2020Latest edition The Editor(s) (if applicable) and The Author(s), un

[復(fù)制鏈接]
查看: 29114|回復(fù): 41
樓主
發(fā)表于 2025-3-21 20:02:08 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data 2.0 Processing Systems
期刊簡稱A Systems Overview
影響因子2023Sherif Sakr
視頻videohttp://file.papertrans.cn/186/185580/185580.mp4
發(fā)行地址Provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems and discusses various aspects of research and development.Describes an entire range of engine
圖書封面Titlebook: Big Data 2.0 Processing Systems; A Systems Overview Sherif Sakr Book 2020Latest edition The Editor(s) (if applicable) and The Author(s), un
影響因子.This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems...After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while t
Pindex Book 2020Latest edition
The information of publication is updating

書目名稱Big Data 2.0 Processing Systems影響因子(影響力)




書目名稱Big Data 2.0 Processing Systems影響因子(影響力)學(xué)科排名




書目名稱Big Data 2.0 Processing Systems網(wǎng)絡(luò)公開度




書目名稱Big Data 2.0 Processing Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data 2.0 Processing Systems被引頻次




書目名稱Big Data 2.0 Processing Systems被引頻次學(xué)科排名




書目名稱Big Data 2.0 Processing Systems年度引用




書目名稱Big Data 2.0 Processing Systems年度引用學(xué)科排名




書目名稱Big Data 2.0 Processing Systems讀者反饋




書目名稱Big Data 2.0 Processing Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:23:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:57:33 | 只看該作者
Rüdiger Lorenz,Margareta Klinger,Mario Brocklar techniques on harnessing the power of data by achieving powerful analytical features. This chapter focuses on discussing several systems that have been developed to support computationally expensive machine learning and deep learning algorithms on top of big data processing frameworks.
5#
發(fā)表于 2025-3-22 10:03:04 | 只看該作者
https://doi.org/10.1007/978-3-030-44187-6Database Management Systems; Hadoop; Stream Data Management; Graph Databases; Cloud Computing; Data Analy
6#
發(fā)表于 2025-3-22 16:01:11 | 只看該作者
7#
發(fā)表于 2025-3-22 20:49:58 | 只看該作者
Tau and Intracellular Transport in Neurons,a storage, and computation systems. In practice, data generation and consumption is becoming a main part of people’s daily life especially with the pervasive availability and usage of Internet technology and applications. The Big Data term has been coined under the tremendous and explosive growth of
8#
發(fā)表于 2025-3-22 22:56:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:27:44 | 只看該作者
10#
發(fā)表于 2025-3-23 08:38:56 | 只看該作者
K. D. Lerch,D. Sch?fer,J. Uelzenetween objects. Graphs have been widely used to represent datasets and encode problems across an already extensive range of application domains. The ever-increasing size of graph-structured data for these applications creates a critical need for scalable and even elastic systems that can process lar
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝县| 常熟市| 鹿泉市| 岗巴县| 胶南市| 玉屏| 阿巴嘎旗| 定南县| 安义县| 二连浩特市| 赤水市| 揭西县| 伽师县| 大英县| 郁南县| 福海县| 荣昌县| 林州市| 都安| 余庆县| 苏州市| 呼图壁县| 花垣县| 沧源| 方城县| 调兵山市| 丽江市| 余姚市| 昆明市| 左云县| 蕲春县| 台中市| 高要市| 旅游| 浦江县| 曲靖市| 交城县| 漳州市| 陇川县| 玉门市| 友谊县|