找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
41#
發(fā)表于 2025-3-28 15:05:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:20:17 | 只看該作者
Sarah Blissett,Vaikom S. Mahadevan the neighbourhood of a singular point it is natural to linearize the problem, so that we are then investigating the phase portrait of a linear vector field (for which, incidentally, the local study at the origin and the global study are the same thing). In this chapter we shall see that such an app
43#
發(fā)表于 2025-3-29 00:18:52 | 只看該作者
Interventions in Career Design and Educationum point? This translates into our technical language as follows. Consider a vector field . on a phase space ., and a point . at which . 0 (recall that such a point is traditionally called a .. By differentiation at . we associate to these a linear vector field ., which we naturally call the . of .
44#
發(fā)表于 2025-3-29 05:32:05 | 只看該作者
Interventions in Career Design and Educationd orbits (known also under the poetic name of .). They are studied by a method that goes back to Poincaré. This consists of choosing a point a of the closed orbit Ω, taking a small piece of hypersurface . through o and transverse to Ω, and for each . € . considering the first point . at which the or
45#
發(fā)表于 2025-3-29 10:44:51 | 只看該作者
46#
發(fā)表于 2025-3-29 13:52:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:05 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潢川县| 阿尔山市| 扎兰屯市| 南昌县| 繁峙县| 绥棱县| 双江| 建宁县| 信丰县| 洞头县| 安陆市| 汝州市| 鄂托克前旗| 民权县| 五家渠市| 嘉峪关市| 博兴县| 广宁县| 松原市| 遵义市| 苗栗市| 全南县| 桂阳县| 通辽市| 治县。| 苏尼特右旗| 堆龙德庆县| 宝丰县| 威海市| 基隆市| 马鞍山市| 丁青县| 宿松县| 南充市| 沁阳市| 紫云| 铁岭县| 祁门县| 道孚县| 丰镇市| 长泰县|