找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復制鏈接]
樓主: 調停
31#
發(fā)表于 2025-3-27 00:32:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:44:59 | 只看該作者
https://doi.org/10.1007/b137719In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
33#
發(fā)表于 2025-3-27 07:25:04 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:39 | 只看該作者
Introduction,In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
35#
發(fā)表于 2025-3-27 14:08:44 | 只看該作者
Transversality Theorems,In this chapter we look into a topic which is the modern version of an old idea, namely ’general position’, and we shall try to explain why it is important.
36#
發(fā)表于 2025-3-27 19:38:20 | 只看該作者
Local Inversion,ther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
37#
發(fā)表于 2025-3-28 00:15:23 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
38#
發(fā)表于 2025-3-28 04:20:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:38:25 | 只看該作者
40#
發(fā)表于 2025-3-28 14:09:33 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 05:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
余庆县| 宜城市| 绥滨县| 湘西| 泌阳县| 阿鲁科尔沁旗| 宜昌市| 保山市| 诸暨市| 古交市| 肥城市| 惠水县| 玛曲县| 阿拉善右旗| 西城区| 焦作市| 贵港市| 尼木县| 额济纳旗| 资溪县| 水富县| 鄂托克旗| 从化市| 慈溪市| 长子县| 成都市| 工布江达县| 乌拉特中旗| 江安县| 新丰县| 淮北市| 正阳县| 公主岭市| 新民市| 普兰店市| 柳江县| 泰宁县| 宝清县| 定边县| 卫辉市| 车致|