找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
31#
發(fā)表于 2025-3-27 00:32:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:44:59 | 只看該作者
https://doi.org/10.1007/b137719In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
33#
發(fā)表于 2025-3-27 07:25:04 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:39 | 只看該作者
Introduction,In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
35#
發(fā)表于 2025-3-27 14:08:44 | 只看該作者
Transversality Theorems,In this chapter we look into a topic which is the modern version of an old idea, namely ’general position’, and we shall try to explain why it is important.
36#
發(fā)表于 2025-3-27 19:38:20 | 只看該作者
Local Inversion,ther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
37#
發(fā)表于 2025-3-28 00:15:23 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
38#
發(fā)表于 2025-3-28 04:20:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:38:25 | 只看該作者
40#
發(fā)表于 2025-3-28 14:09:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
百色市| 洛南县| 双鸭山市| 崇礼县| 江源县| 革吉县| 邵阳市| 池州市| 怀宁县| 上杭县| 神池县| 白河县| 阿克苏市| 工布江达县| 珠海市| 天台县| 于都县| 侯马市| 汝南县| 乌鲁木齐县| 黑龙江省| 佛坪县| 辽源市| 重庆市| 南木林县| 樟树市| 华安县| 丹江口市| 定兴县| 桦南县| 马山县| 宝兴县| 防城港市| 望都县| 新乐市| 永济市| 松原市| 蛟河市| 泰顺县| 苍山县| 团风县|