找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory of Functional Differential Equations; Shangjiang Guo,Jianhong Wu Book 2013 Springer Science+Business Media New York 201

[復(fù)制鏈接]
樓主: mortality
11#
發(fā)表于 2025-3-23 12:18:29 | 只看該作者
12#
發(fā)表于 2025-3-23 16:35:41 | 只看該作者
https://doi.org/10.1007/3-540-07170-9rically occur. These are fold (also referred to as steady-state) bifurcations, for which the linearization has a zero eigenvalue, and Hopf bifurcations, for which the eigenvalue is complex with zero real part. Typically, branches of solutions bifurcate from the original equilibrium and are approxima
13#
發(fā)表于 2025-3-23 18:24:17 | 只看該作者
Shangjiang Guo,Jianhong WuAuthored by two leading active researchers.Self-contained and with most recent results on state-dependent delay equations and global bifurcations.Contains theory and some related applications.Includes
14#
發(fā)表于 2025-3-23 23:19:33 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:25 | 只看該作者
16#
發(fā)表于 2025-3-24 10:14:41 | 只看該作者
Normal Form Theory,alysis. In the context of finite-dimensional ordinary differential equations (ODEs), this theory can be traced back as far as Euler. However, Poincaré [247] and Birkhoff [33] were the first to bring forth the theory in a more definite form.
17#
發(fā)表于 2025-3-24 11:54:36 | 只看該作者
18#
發(fā)表于 2025-3-24 16:17:37 | 只看該作者
19#
發(fā)表于 2025-3-24 19:08:09 | 只看該作者
,Lyapunov–Schmidt Reduction,The main objective of this chapter is to introduce the Lyapunov–Schmidt reduction method and show how this reduction can be performed in a way compatible with symmetries.
20#
發(fā)表于 2025-3-25 00:48:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤岗市| 托里县| 赫章县| 淮滨县| 陵川县| 新田县| 资兴市| 新昌县| 右玉县| 宣汉县| 抚州市| 原平市| 鹿泉市| 湄潭县| 湖北省| 高密市| 吴桥县| 仲巴县| 南靖县| 沙湾县| 普兰店市| 会宁县| 河池市| 武穴市| 黑龙江省| 阳泉市| 北流市| 万全县| 海晏县| 孙吴县| 英山县| 石棉县| 乾安县| 天全县| 绵阳市| 滕州市| 郓城县| 敦煌市| 汤原县| 邓州市| 资中县|