找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory of Functional Differential Equations; Shangjiang Guo,Jianhong Wu Book 2013 Springer Science+Business Media New York 201

[復(fù)制鏈接]
查看: 28974|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:33:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bifurcation Theory of Functional Differential Equations
影響因子2023Shangjiang Guo,Jianhong Wu
視頻videohttp://file.papertrans.cn/186/185531/185531.mp4
發(fā)行地址Authored by two leading active researchers.Self-contained and with most recent results on state-dependent delay equations and global bifurcations.Contains theory and some related applications.Includes
學(xué)科分類Applied Mathematical Sciences
圖書封面Titlebook: Bifurcation Theory of Functional Differential Equations;  Shangjiang Guo,Jianhong Wu Book 2013 Springer Science+Business Media New York 201
影響因子This book provides a crash course on various methods from the bifurcationtheory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. Thiswell illustrated book aims to be self containedso the readers will find in this book all relevant materials inbifurcation, dynamical systems with symmetry, functional differentialequations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Pindex Book 2013
The information of publication is updating

書目名稱Bifurcation Theory of Functional Differential Equations影響因子(影響力)




書目名稱Bifurcation Theory of Functional Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Bifurcation Theory of Functional Differential Equations網(wǎng)絡(luò)公開度




書目名稱Bifurcation Theory of Functional Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bifurcation Theory of Functional Differential Equations被引頻次




書目名稱Bifurcation Theory of Functional Differential Equations被引頻次學(xué)科排名




書目名稱Bifurcation Theory of Functional Differential Equations年度引用




書目名稱Bifurcation Theory of Functional Differential Equations年度引用學(xué)科排名




書目名稱Bifurcation Theory of Functional Differential Equations讀者反饋




書目名稱Bifurcation Theory of Functional Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:50:35 | 只看該作者
Normal Form Theory,alysis. In the context of finite-dimensional ordinary differential equations (ODEs), this theory can be traced back as far as Euler. However, Poincaré [247] and Birkhoff [33] were the first to bring forth the theory in a more definite form.
5#
發(fā)表于 2025-3-22 09:20:43 | 只看該作者
Degree Theory,.?.→., where . is some (real) Banach space. In this type of nonlinear problem, we are interested in the solutions of . In most cases, it turns out that it is too much to ask to determine the zeros analytically and explicitly. Hence one looks for a more qualitative study of the zeros, such as the num
6#
發(fā)表于 2025-3-22 13:45:37 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:28 | 只看該作者
9#
發(fā)表于 2025-3-23 04:54:50 | 只看該作者
Elsa Carvalho,Jorge Cruz,Pedro Barahonaint to the (generalized) eigenspace of the neutrally stable eigenvalues. Since the local dynamic behavior . to the center manifold is relatively simple, the potentially complicated asymptotic behaviors of the full system are captured by the flows restricted to the center manifolds.
10#
發(fā)表于 2025-3-23 06:45:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 濉溪县| 洪洞县| 永修县| 涡阳县| 黑河市| 淳化县| 白城市| 元阳县| 松阳县| 文昌市| 晋宁县| 衡阳县| 迁安市| 张家界市| 临沂市| 通化市| 塘沽区| 名山县| 扎鲁特旗| 白沙| 盈江县| 新营市| 许昌市| 拜城县| 泰宁县| 凤山县| 长白| 乐亭县| 辽阳市| 凤山县| 宜州市| 都江堰市| 青龙| 泰安市| 保康县| 南充市| 会理县| 平阴县| 成武县| 赣州市|