找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
41#
發(fā)表于 2025-3-28 16:30:06 | 只看該作者
Hexagonal Distributions on Hexagonal Latticeysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
42#
發(fā)表于 2025-3-28 20:04:50 | 只看該作者
Irreducible Representations of the Group for Hexagonal Latticewas described in . by the group ., which is the semidirect product of D. by .. In this chapter, the irreducible representations of this group are found according to a standard procedure in group representation theory known as the method of little groups, which exploits the semidirect product structu
43#
發(fā)表于 2025-3-29 01:13:27 | 只看該作者
Matrix Representation for Economy on Hexagonal Lattice . and .. In this chapter, the matrix representation of this group for the economy on the hexagonal lattice is investigated in preparation for the group-theoretic bifurcation analysis in search of bifurcating hexagonal patterns in Chaps. . and .. Irreducible decomposition of the matrix representatio
44#
發(fā)表于 2025-3-29 05:42:34 | 只看該作者
Hexagons of Christaller and L?sch: Using Equivariant Branching Lemmabranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑阁县| 泸水县| 彭州市| 土默特右旗| 龙陵县| 恩平市| 雅安市| 望奎县| 安远县| 灯塔市| 福海县| 甘孜县| 海门市| 巴楚县| 太湖县| 库车县| 大渡口区| 呼伦贝尔市| 吉安县| 博乐市| 鄱阳县| 裕民县| 曲沃县| 澄迈县| 尖扎县| 祁门县| 舞钢市| 金川县| 合阳县| 吴旗县| 南华县| 读书| 伊金霍洛旗| 甘洛县| 本溪| 平定县| 太康县| 临武县| 通城县| 封开县| 泗水县|