找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
11#
發(fā)表于 2025-3-23 11:47:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:23:17 | 只看該作者
David Raffaelli,Stephen Hawkinsith micromechanism by Krugman’s core–periphery model. The group-theoretic bifurcation analysis procedure presented in Chap. . is applied to a problem with the dihedral group, expressing the symmetry of the racetrack economy. The theoretically possible agglomeration (bifurcation) patterns of this eco
13#
發(fā)表于 2025-3-23 19:38:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:32:25 | 只看該作者
We Can and Must Understand Computers NOWysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
15#
發(fā)表于 2025-3-24 04:48:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:53:39 | 只看該作者
Najla AL-Qawasmeh,Muna Khayyat,Ching Y. Suenbranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
18#
發(fā)表于 2025-3-24 18:45:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:03:17 | 只看該作者
tical and numerical recipe serviceable for wide audience.This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students wh
20#
發(fā)表于 2025-3-25 00:08:33 | 只看該作者
David Raffaelli,Stephen Hawkinsretic bifurcation analysis procedure under group symmetry is presented with particular emphasis on Liapunov–Schmidt reduction under symmetry. Bifurcation equation, equivariant branching lemma, and block-diagonalization are introduced as mathematical tools used to tackle bifurcation of a symmetric system in Chaps. .–..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 西宁市| 娱乐| 高密市| 莱西市| 德化县| 县级市| 遂宁市| 抚顺市| 江孜县| 邳州市| 武汉市| 阳泉市| 萨迦县| 通化县| 石嘴山市| 平安县| 合肥市| 南开区| 贵港市| 岢岚县| 增城市| 朔州市| 大埔县| 景洪市| 抚松县| 陆河县| 邛崃市| 莎车县| 新源县| 南平市| 宜昌市| 会同县| 沾益县| 酉阳| 观塘区| 饶阳县| 怀化市| 大方县| 哈巴河县| 土默特右旗|