找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biased Sampling, Over-identified Parameter Problems and Beyond; Jing Qin Book 2017 Springer Nature Singapore Pte Ltd. 2017 Biased Sampling

[復(fù)制鏈接]
樓主: 評(píng)估
41#
發(fā)表于 2025-3-28 16:27:28 | 只看該作者
https://doi.org/10.1007/978-3-658-31493-4The projection method can be used not only in finitely many parameter problems but also in nuisance function or infinite many nuisance parameters cases.
42#
發(fā)表于 2025-3-28 20:18:27 | 只看該作者
Schlussfolgerung und Diskussion,The maximum likelihood method for regular parametric models has many optimality properties. As a result, it is one of the most popular methods in statistical inference. However, model mis-specification is a big concern since a misspecified model may lead to bias results.
43#
發(fā)表于 2025-3-28 23:52:39 | 只看該作者
https://doi.org/10.1007/978-3-642-11710-7Besides empirical likelihood, the Kullback–Leibler likelihood is another popular method to calibrate auxiliary information. The entropy family has also been used extensively in information theory. We mainly focus on discussions for continuous random variable cases. The discrete cases can be treated similarly.
44#
發(fā)表于 2025-3-29 06:44:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:48:45 | 只看該作者
46#
發(fā)表于 2025-3-29 13:52:37 | 只看該作者
https://doi.org/10.1007/978-3-322-95257-8In this chapter we study conditional likelihood-based inference in discrete outcome problems. This method is very useful for sparse data where there exists a large number of nuisance parameters. Moreover it is used extensively in matched case-control studies where some baseline covariates or survival times are matched at the data collection stage.
47#
發(fā)表于 2025-3-29 16:15:02 | 只看該作者
48#
發(fā)表于 2025-3-29 22:03:03 | 只看該作者
49#
發(fā)表于 2025-3-30 00:13:07 | 只看該作者
50#
發(fā)表于 2025-3-30 06:32:36 | 只看該作者
Internet - Bildung - GemeinschaftIn this Chapter we present the results by Qin and Zhang (Biometrika 92:251–270, 2005) and Li and Qin (JASA 496:1476–1484, 2011) on the connection between marginal likelihood, conditional likelihood and empirical likelihood.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘荣县| 鄂托克前旗| 鹿邑县| 寿光市| 通河县| 舒兰市| 达孜县| 综艺| 清水县| 新和县| 大英县| 青田县| 普宁市| 农安县| 天台县| 扶沟县| 县级市| 沈丘县| 盐山县| 永兴县| 兴业县| 苏尼特左旗| 洛川县| 舞阳县| 石城县| 潮州市| 肃宁县| 友谊县| 盘山县| 宝兴县| 社会| 肃宁县| 北流市| 乐东| 葫芦岛市| 裕民县| 阿尔山市| 进贤县| 温州市| 陈巴尔虎旗| 许昌市|