找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biased Sampling, Over-identified Parameter Problems and Beyond; Jing Qin Book 2017 Springer Nature Singapore Pte Ltd. 2017 Biased Sampling

[復(fù)制鏈接]
樓主: 評(píng)估
51#
發(fā)表于 2025-3-30 09:23:24 | 只看該作者
Brief Review of Parametric Likelihood Inferences,Maximum likelihood estimation (MLE) under regular conditions can be found in most statistical books. In non-regular cases, however, it involves all kinds of problems, such as solution on the boundary of parameter space, multiple roots, non-existence, inconsistency in the presence of many incidental parameters, etc.
52#
發(fā)表于 2025-3-30 13:39:03 | 只看該作者
53#
發(fā)表于 2025-3-30 17:04:13 | 只看該作者
54#
發(fā)表于 2025-3-30 21:09:45 | 只看該作者
Empirical Likelihood with Applications,The maximum likelihood method for regular parametric models has many optimality properties. As a result, it is one of the most popular methods in statistical inference. However, model mis-specification is a big concern since a misspecified model may lead to bias results.
55#
發(fā)表于 2025-3-31 01:56:13 | 只看該作者
,Kullback–Leibler Likelihood and Entropy Family,Besides empirical likelihood, the Kullback–Leibler likelihood is another popular method to calibrate auxiliary information. The entropy family has also been used extensively in information theory. We mainly focus on discussions for continuous random variable cases. The discrete cases can be treated similarly.
56#
發(fā)表于 2025-3-31 09:03:10 | 只看該作者
57#
發(fā)表于 2025-3-31 12:11:28 | 只看該作者
58#
發(fā)表于 2025-3-31 16:58:57 | 只看該作者
59#
發(fā)表于 2025-3-31 20:22:32 | 只看該作者
Discrete Data Models,The logistic regression model has been widely used in statistical literature for analyzing categorical data. In this chapter we present many other useful discrete data models. If the data collection process is retrospective, then we end up with different biased sampling problems.
60#
發(fā)表于 2025-4-1 00:10:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌市| 井研县| 祥云县| 新竹县| 垫江县| 苍南县| 金坛市| 拉萨市| 留坝县| 高密市| 巧家县| 兴仁县| 桃江县| 昭平县| 额尔古纳市| 镇宁| 长垣县| 宽甸| 虹口区| 陆丰市| 梅州市| 旬邑县| 吉水县| 白朗县| 朝阳市| 莱芜市| 楚雄市| 托里县| 卓资县| 门头沟区| 汝州市| 白玉县| 南皮县| 五常市| 兖州市| 桐梓县| 普兰县| 浦县| 深圳市| 贵州省| 威海市|