找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Beyond Planar Graphs; Communications of NI Seok-Hee Hong,Takeshi Tokuyama Book 2020 Springer Nature Singapore Pte Ltd. 2020 Graph Algorithm

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 16:21:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:04:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:01:11 | 只看該作者
https://doi.org/10.1007/978-1-349-27478-9clude .-planar graph, .-quasiplanar graphs, .-gap-planar graphs, and .-locally planar graphs. The chapter reviews typical proof techniques, upper and lower bounds on the number of edges in these classes, as well as recent results on containment relations between these classes, and concludes with a c
44#
發(fā)表于 2025-3-29 03:45:49 | 只看該作者
45#
發(fā)表于 2025-3-29 10:55:32 | 只看該作者
Introduction to Project Finance,rded as the simplest town maps. Now, we consider a town having some pedestrian bridges, which cannot be realized by a plane graph. Its underlying graph can actually be regarded as a 1-. graph. The notion of 1-plane and 1-. graphs was first introduced by Ringel in connection with the problem of simul
46#
發(fā)表于 2025-3-29 12:03:08 | 只看該作者
https://doi.org/10.1007/978-3-030-96390-3ete. This chapter reviews the algorithmic results on 1-planar graphs. We first review a linear time algorithm for testing maximal 1-planarity of a graph if a . (i.e., the circular ordering of edges for each vertex) is given. A graph is . if the addition of an edge destroys 1-planarity. Next, we sket
47#
發(fā)表于 2025-3-29 19:26:43 | 只看該作者
48#
發(fā)表于 2025-3-29 22:19:51 | 只看該作者
Peer Stolle,Tobias Singelnsteinct graph is called .-. if it is isomorphic to a .-planar topological graph, i.e., if it can be drawn on the plane with at most . crossings per edge. While planar and 1-planar graphs have been extensively studied in the literature and their structure has been well understood, this is not the case for
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
融水| 陆良县| 东平县| 蒲城县| 合阳县| 淅川县| 高尔夫| 宣汉县| 尼玛县| 惠东县| 年辖:市辖区| 桦川县| 剑河县| 新郑市| 黑水县| 抚州市| 南靖县| 嘉义市| 上思县| 侯马市| 武定县| 原阳县| 若羌县| 新昌县| 儋州市| 万全县| 苍山县| 防城港市| 龙海市| 宜黄县| 松江区| 兴义市| 湟源县| 东丽区| 宿松县| 遂川县| 嘉义县| 七台河市| 文昌市| 将乐县| 古丈县|