找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Planar Graphs; Communications of NI Seok-Hee Hong,Takeshi Tokuyama Book 2020 Springer Nature Singapore Pte Ltd. 2020 Graph Algorithm

[復(fù)制鏈接]
樓主: Intermediary
11#
發(fā)表于 2025-3-23 10:59:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:12 | 只看該作者
Angular Resolutions: Around Vertices and Crossings,/total angular resolution of any straight-line drawing?of the graph. In this chapter, we review some of the results on angular resolution in the literature, and identify several open problems in the field.
13#
發(fā)表于 2025-3-23 20:45:14 | 只看該作者
Crossing Layout in Non-planar Graph Drawings,c graphs?as a way to represent crossings, the slanted layout of crossings in orthogonal graph layouts, and minimizing bundled rather than individual crossings. Further, we look at concepts such as confluent graph layout and partial edge drawings, which both have no visible crossings.
14#
發(fā)表于 2025-3-23 23:48:23 | 只看該作者
Simultaneous Embedding, of planarity. Afterward, we survey algorithmic approaches to the . problem, give an overview of recent results, and discuss their limitations. We close with a brief discussion of some recent variations of the simultaneous embedding?problem.
15#
發(fā)表于 2025-3-24 03:18:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:56 | 只看該作者
1-Planar Graphs,begin with formally defining 1-plane and 1-planar graphs and mainly focus on “maximal”, “maximum,” and “optimal” 1-planar graphs, which are relatively easy to treat. This chapter reviews some basic properties of these graphs.
18#
發(fā)表于 2025-3-24 17:57:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:35 | 只看該作者
and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental r978-981-15-6535-9978-981-15-6533-5
20#
發(fā)表于 2025-3-24 23:19:56 | 只看該作者
Edge Partitions and Visibility Representations of 1-planar Graphs, studied for planar graphs, they recently attracted attention also for 1-planar graphs, i.e., those graphs that can be drawn in the plane such that each edge is crossed at most once. After giving an overview of 1-planarity, we survey the main results concerning edge partitions and visibility represe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金阳县| 大悟县| 河间市| 海南省| 日照市| 沿河| 子长县| 清新县| 横山县| 灌阳县| 金门县| 六盘水市| 阳春市| 民县| 平利县| 泗水县| 佛山市| 沁源县| 宣威市| 囊谦县| 朝阳市| 禹州市| 永福县| 南雄市| 长顺县| 泸水县| 岳普湖县| 孟津县| 封开县| 得荣县| 望谟县| 宁陕县| 监利县| 多伦县| 安国市| 佛学| 祁连县| 陕西省| 彰化县| 高雄县| 汉源县|