找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 7th International Co Sylvie Le Hégarat-Mascle,Isabelle Bloch,Emanuel Al Conference proceedings 2

[復(fù)制鏈接]
樓主: 衰退
21#
發(fā)表于 2025-3-25 07:08:52 | 只看該作者
Industrialismus und ?koromantiknce. We show that in the particular case where the focal sets of the belief function are Cartesian products of intervals, finding best, ., non-dominated, paths according to these criteria amounts to solving known variants of the deterministic shortest path problem, for which exact resolution algorithms exist.
22#
發(fā)表于 2025-3-25 09:20:56 | 只看該作者
Evidential Clustering by?Competitive Agglomeration since it can mine the ambiguity and uncertainty of the data structure; secondly, through a competitive strategy, it can automatically gain the number of clusters under the rule of intra-class compactness and inter-class dispersion. Results demonstrate the effectiveness of the proposed method on synthetic and real-world datasets.
23#
發(fā)表于 2025-3-25 15:00:03 | 只看該作者
Belief Functions on?Ordered Frames of?Discernmentisjunctive combination. We also study distances on ordered elements and their use. In particular, from a membership function, we redefine the cardinality of the intersection of ordered elements, considering them fuzzy.
24#
發(fā)表于 2025-3-25 18:32:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:22:51 | 只看該作者
A Variational Bayesian Clustering Approach to?Acoustic Emission Interpretation Including Soft Labelsused in non-destructive testing. This model, called VBGMM (variational Bayesian GMM) allows the end-user to automatically determine the number of clusters which makes it relevant for this type of application where clusters are related to damages. In this work, we modify the training procedure to inc
26#
發(fā)表于 2025-3-26 03:34:12 | 只看該作者
27#
發(fā)表于 2025-3-26 05:39:16 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:05 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:31 | 只看該作者
Ordinal Classification Using Single-Model Evidential Extreme Learning Machine theory, in this paper, the single-model multi-output extreme learning machine is learned from evidential training data. Taking both the uncertainty and the ordering relation of labels into consideration, given mass functions of training labels, different evidential encoding schemes for model output
30#
發(fā)表于 2025-3-26 20:19:24 | 只看該作者
Reliability-Based Imbalanced Data Classification with?Dempster-Shafer Theorythe minority class. This paper proposes a reliability-based imbalanced data classification approach (RIC) with Dempster-Shafer theory to address this issue. First, based on the minority class, multiple under-sampling for the majority one are implemented to obtain the corresponding balanced training
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松阳县| 贵州省| 深圳市| 鸡东县| 铜鼓县| 云浮市| 开封市| 诸暨市| 孝昌县| 北碚区| 鸡东县| 绍兴市| 台山市| 固原市| 高陵县| 七台河市| 东辽县| 宿迁市| 潞西市| 新昌县| 云阳县| 鄯善县| 武汉市| 疏附县| 潮安县| 都兰县| 赤壁市| 禄劝| 西城区| 简阳市| 泽普县| 舟曲县| 柘城县| 芦山县| 孝昌县| 吴江市| 老河口市| 莲花县| 保康县| 巨野县| 茌平县|