找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 7th International Co Sylvie Le Hégarat-Mascle,Isabelle Bloch,Emanuel Al Conference proceedings 2

[復制鏈接]
樓主: 衰退
11#
發(fā)表于 2025-3-23 11:41:59 | 只看該作者
12#
發(fā)表于 2025-3-23 15:05:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:51:19 | 只看該作者
https://doi.org/10.1007/978-94-011-6790-1rget recognition. In the training process, the weight of each image is automatically optimized in the networks. Finally, the performance of the proposed HIFTR has been evaluated by comparing with other related methods, and the experimental results show that the HIFTR method can efficiently improve the classification accuracy.
14#
發(fā)表于 2025-3-23 22:31:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:02:14 | 只看該作者
Ordinal Classification Using Single-Model Evidential Extreme Learning Machinenty in training labels, the proposed evidential ordinal method can be reduced to the traditional ordinal one. Experiments on artificial and UCI datasets illustrate the practical implementation and effectiveness of proposed evidential extreme learning machine for ordinal classification.
16#
發(fā)表于 2025-3-24 09:48:29 | 只看該作者
17#
發(fā)表于 2025-3-24 10:52:39 | 只看該作者
18#
發(fā)表于 2025-3-24 17:04:58 | 只看該作者
19#
發(fā)表于 2025-3-24 20:22:10 | 只看該作者
Themenmotivation und Gang der Untersuchung, since it can mine the ambiguity and uncertainty of the data structure; secondly, through a competitive strategy, it can automatically gain the number of clusters under the rule of intra-class compactness and inter-class dispersion. Results demonstrate the effectiveness of the proposed method on synthetic and real-world datasets.
20#
發(fā)表于 2025-3-24 23:12:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
蒙自县| 竹山县| 确山县| 保德县| 雅江县| 囊谦县| 本溪市| 广州市| 宁安市| 巴马| 康马县| 自贡市| 县级市| 榆树市| 临澧县| 婺源县| 林口县| 新津县| 绵竹市| 宁阳县| 元氏县| 玛沁县| 云浮市| 牡丹江市| 鹤山市| 胶州市| 陵川县| 西畴县| 莱芜市| 望谟县| 铁岭市| 弥勒县| 区。| 剑川县| 鞍山市| 北川| 海南省| 石家庄市| 甘德县| 游戏| 南康市|