找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Algebraic Groups and Lie Algebras; Gerhard P. Hochschild Textbook 1981 Springer-Verlag New York Inc. 1981 Algebraische Gru

[復(fù)制鏈接]
樓主: introspective
51#
發(fā)表于 2025-3-30 11:25:35 | 只看該作者
52#
發(fā)表于 2025-3-30 15:32:10 | 只看該作者
53#
發(fā)表于 2025-3-30 18:16:19 | 只看該作者
From Lie Algebras to Groups,In this final chapter, we apply the above results on Lie algebras in order to bring the Lie theory of algebraic groups over fields of characteristic 0 to a satisfactory state of completeness.
54#
發(fā)表于 2025-3-30 22:17:14 | 只看該作者
Representative Functions and Hopf Algebras,ed here as an abstraction from the systems of functions associated with the representations of a group by automorphisms of finite-dimensional vector spaces. This leads to an initializing discussion of our main objects of study, affine algebraic groups.
55#
發(fā)表于 2025-3-31 01:37:05 | 只看該作者
56#
發(fā)表于 2025-3-31 07:23:49 | 只看該作者
57#
發(fā)表于 2025-3-31 09:41:33 | 只看該作者
58#
發(fā)表于 2025-3-31 16:19:25 | 只看該作者
Borel Subgroups,s. This theory is based on certain families of subgroups, such as toroids and ., i.e., irreducible maximal solvable subgroups. To some extent, the consideration of Borel subgroups reduces the structure theory to that of solvable groups.
59#
發(fā)表于 2025-3-31 20:11:57 | 只看該作者
Algebraic Automorphism Groups, .(.) with the structure of an algebraic group in such a way that . becomes a strict .(.)-variety. The example of a toroid of dimension greater than 1 shows that this is not always possible. However, good questions remain concerning suitable subgroups of .(.) or suitably restricted groups .
60#
發(fā)表于 2025-3-31 23:38:35 | 只看該作者
Basic Theory of Algebraic Groups and Lie Algebras978-1-4613-8114-3Series ISSN 0072-5285 Series E-ISSN 2197-5612
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静海县| 四平市| 正宁县| 武清区| 汾阳市| 永济市| 红河县| 锦州市| 桦南县| 子洲县| 西吉县| 醴陵市| 辰溪县| 封开县| 通渭县| 乐昌市| 博白县| 苗栗市| 皮山县| 迁西县| 齐河县| 平利县| 泰兴市| 出国| 崇州市| 封开县| 台南县| 青神县| 利辛县| 青神县| 旬邑县| 鄂伦春自治旗| 清流县| 图木舒克市| 潞城市| 博罗县| 札达县| 双鸭山市| 阆中市| 峨眉山市| 武乡县|