找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Algebraic Groups and Lie Algebras; Gerhard P. Hochschild Textbook 1981 Springer-Verlag New York Inc. 1981 Algebraische Gru

[復(fù)制鏈接]
樓主: introspective
11#
發(fā)表于 2025-3-23 11:31:00 | 只看該作者
The Universal Enveloping Algebra,he category of Lie algebra modules as a category of modules for an associative algebra. This becomes more than an analogy when the universal enveloping algebra is viewed with its full Hopf algebra structure. By dualization, one obtains a commutative Hopf algebra which, in the case where the Lie alge
12#
發(fā)表于 2025-3-23 14:29:19 | 只看該作者
Semisimple Lie Algebras,is a finite-dimensional semisimple Lie algebra over a field of characteristic 0, then the continuous dual .(.)’ of the universal enveloping algebra is finitely generated as an algebra. This will be used in the final chapter for constructing the “simply connected” affine algebraic group with Lie alge
13#
發(fā)表于 2025-3-23 20:35:40 | 只看該作者
14#
發(fā)表于 2025-3-24 01:21:50 | 只看該作者
R. Leitsmann,F. Bechstedt,F. Ortmann(.) fully, under the assumption that the base field be of characteristic 0. This assumption is retained in Section 3, which is devoted to reducing, as far as is possible in general, the representation theory of an algebraic group to that of its Lie algebra.
15#
發(fā)表于 2025-3-24 04:54:43 | 只看該作者
Ping Wang,Jochen Fr?hlich,Ulrich Maasal theoretical considerations to the situation of an ordinary polynomial algebra. The remaining results of Section 1 concern the connections between the dimensions of irreducible closed subvarieties of irreducible affine varieties and the generation of their annihilating ideals.
16#
發(fā)表于 2025-3-24 09:42:02 | 只看該作者
Ping Wang,Jochen Fr?hlich,Ulrich Maas structure on ./.. In Section 1, it appears that [.(.)]. is a suitable candidate for the field .(./.) of rational functions. Starting with this field, Section 2 provides an imbedding of ./. as an open irreducible subset of a projective variety, and shows that the resulting variety structure of ./. has all of the desirable properties.
17#
發(fā)表于 2025-3-24 11:13:48 | 只看該作者
https://doi.org/10.1007/978-3-642-15748-6 finitely generated as an algebra. This will be used in the final chapter for constructing the “simply connected” affine algebraic group with Lie algebra .. The required finite generation of .(.)’ is obtained from the classification of the finite-dimensional .-modules by the theory of weights.
18#
發(fā)表于 2025-3-24 18:16:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:14:21 | 只看該作者
Morphisms of Varieties and Dimension,al theoretical considerations to the situation of an ordinary polynomial algebra. The remaining results of Section 1 concern the connections between the dimensions of irreducible closed subvarieties of irreducible affine varieties and the generation of their annihilating ideals.
20#
發(fā)表于 2025-3-25 01:44:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 江山市| 金华市| 皮山县| 钟山县| 防城港市| 西畴县| 迁西县| 潞城市| 和田市| 武穴市| 阿坝| 古丈县| 新蔡县| 天津市| 明星| 天津市| 大厂| 马龙县| 通辽市| 崇礼县| 苗栗市| 汝阳县| 灵丘县| 沙湾县| 玛沁县| 天门市| 乐业县| 东兰县| 禹城市| 江门市| 钦州市| 德江县| 永德县| 乌审旗| 丰原市| 班玛县| 锦屏县| 马山县| 湖南省| 安义县|