找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Algebras and Several Complex Variables; John Wermer Textbook 19762nd edition Springer Science+Business Media New York 1976 Banach.B

[復(fù)制鏈接]
樓主: lumbar-puncture
21#
發(fā)表于 2025-3-25 05:00:40 | 只看該作者
Wirtschaft als funktionales TeilsystemAs the two-dimensional analogue of an are in .., we take a disk in .. defined as follows. Let . be the closed unit disk in the ζ-plane and let ..,…, .. be continuous functions defined on .. Assume that the map ζ → (..(ζ),…, ..(ζ)) is one to one on .. The image . of . under this map we call a . in ...
22#
發(fā)表于 2025-3-25 08:53:37 | 只看該作者
https://doi.org/10.1007/978-3-531-90905-9Given Banach algebras ?. and ?. with maximal ideal spaces .. and .., if ?. and ?. are isomorphic as algebras, then .. and .. are homeomorphic. It is thus to be expected that the topology of . (?) is reflected in the algebraic structure of ?, for an arbitrary Banach algebra ?.
23#
發(fā)表于 2025-3-25 12:58:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:33:17 | 只看該作者
https://doi.org/10.1007/978-3-642-90965-8Let . be a compact set in .. which lies on a smooth .-dimensional (real) submanifold ∑ of ... Assume that . is polynomially convex. Under what conditions on ∑ can we conclude that .?
25#
發(fā)表于 2025-3-25 22:18:30 | 只看該作者
https://doi.org/10.1007/978-3-662-32915-3In Sections 13, 14 and 17 we have studied polynomial approximation on certain kinds of .-dimensional manifolds in C.. In this Section we consider the case . Let ∑ be a .-dimensional submanifold of an open set in C. with .. Let . be a compact set which lies on ∑ and contains a relatively open subset of ∑.
26#
發(fā)表于 2025-3-26 01:45:30 | 只看該作者
Preliminaries and Notations,Let . be a compact Hausdorff space.
27#
發(fā)表于 2025-3-26 05:00:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:26 | 只看該作者
Operational Calculus in One Variable,Let ? denote the algebra of all function . on –π≤θ≤π, with
29#
發(fā)表于 2025-3-26 12:57:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:12:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汨罗市| 兴义市| 精河县| 安龙县| 凤阳县| 聂拉木县| 通化市| 邹城市| 射洪县| 南澳县| 四平市| 治多县| 土默特右旗| 内江市| 镇江市| 称多县| 上杭县| 富蕴县| 淮安市| 咸阳市| 庆元县| 三河市| 霞浦县| 泌阳县| 麦盖提县| 江门市| 肇庆市| 绥阳县| 斗六市| 无棣县| 炉霍县| 宜兴市| 孝感市| 庆城县| 平遥县| 富锦市| 冕宁县| 兴安盟| 博兴县| 邵阳市| 云阳县|