找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 15th International C Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The A

[復制鏈接]
樓主: 密度
21#
發(fā)表于 2025-3-25 06:00:20 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:16 | 只看該作者
Gründungsintention von Akademikernoptima. 12 CEC2005 benchmark functions are selected for testing the performance of CSBOA, and the results of the simulation demonstrate that the CSBOA algorithm effectively accelerates the convergence speed, improves the convergence accuracy, and reduces the likelihood of falling into localized states.
23#
發(fā)表于 2025-3-25 12:14:12 | 只看該作者
Implikationen und Limitationen, The results of experimental comparative analysis on ten benchmark test functions demonstrate that the improved Kepler optimization algorithm based on a mixed strategy exhibits notable improvements in both convergence speed and solution accuracy.
24#
發(fā)表于 2025-3-25 18:25:21 | 只看該作者
25#
發(fā)表于 2025-3-25 22:23:07 | 只看該作者
A Tri-Swarm Particle Swarm Optimization Considering the Cooperation and the Fitness Valuest fitness value were respectively divided into ERS, EIS and CS. The results on seven unimodal benchmark functions demonstrated the superiority of the proposed variant compared with other five variants.
26#
發(fā)表于 2025-3-26 01:20:58 | 只看該作者
Circle Chaotic Search-Based Butterfly Optimization Algorithmoptima. 12 CEC2005 benchmark functions are selected for testing the performance of CSBOA, and the results of the simulation demonstrate that the CSBOA algorithm effectively accelerates the convergence speed, improves the convergence accuracy, and reduces the likelihood of falling into localized states.
27#
發(fā)表于 2025-3-26 05:48:02 | 只看該作者
Improved Kepler Optimization Algorithm Based on?Mixed Strategy The results of experimental comparative analysis on ten benchmark test functions demonstrate that the improved Kepler optimization algorithm based on a mixed strategy exhibits notable improvements in both convergence speed and solution accuracy.
28#
發(fā)表于 2025-3-26 08:36:38 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:14:32 | 只看該作者
Cooperative Search and Rescue Target Assignment Based on Improved Ant Colony Algorithmand makes full use of the global search ability of ant colony algorithm to explore the optimal solution. The simulation results show that this method can quickly and effectively provide the target assignment scheme of search and rescue resources, maximize the survival probability, and improve the efficiency of search and rescue at sea.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 19:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丁青县| 宜都市| 米易县| 漳平市| 浏阳市| 龙游县| 广元市| 舞钢市| 辽源市| 潜山县| 象山县| 陆良县| 文安县| 鹤山市| 康平县| 娄底市| 肇州县| 衡山县| 延边| 信阳市| 班玛县| 突泉县| 夏邑县| 云阳县| 喀喇沁旗| 田东县| 姚安县| 满城县| 静安区| 济阳县| 龙川县| 英德市| 西林县| 石泉县| 甘泉县| 太保市| 乌鲁木齐市| 潜江市| 始兴县| 张家界市| 息烽县|