找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and ; Proceedings of the 1 Thomas Villmann,

[復制鏈接]
樓主: controllers
11#
發(fā)表于 2025-3-23 12:40:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:05:11 | 只看該作者
https://doi.org/10.1007/978-3-642-71247-0that are defined in a low-dimensional space, they can run on big data sets and are mostly immune to the curse of dimensionality in the data space..SOMs are used mainly for dimensionality reduction and marginally for clustering; however, SOMs also suffer from some shortcomings..Vector quantization ma
13#
發(fā)表于 2025-3-23 18:12:19 | 只看該作者
https://doi.org/10.1007/978-3-642-71247-0 solves this issue by projecting high-dimensional data into a low-dimensional space where meaningful distances allow unbiased function estimation. However, projection pursuit only considers projections onto lines and the unbiased function depends on the sample size. We introduce deep projection purs
14#
發(fā)表于 2025-3-23 23:18:43 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:09 | 只看該作者
Dorothea Ritter-R?hr (Psychoanalyse)tended to improve clustering of the resulting output space. Improvement is achieved by abandoning the SOM’s rigid lattice structure in favor of a more expressive output topology afforded by Uniform Manifold Approximation and Projection (UMAP), which is incrementally learned in conjunction with SOUMA
16#
發(fā)表于 2025-3-24 10:01:26 | 只看該作者
https://doi.org/10.1007/978-3-322-83403-4we consider linear data mappings included in vector quantization models, such as .-means++, neural gas, or self-organizing maps, to achieve representations in a lower-dimensional data space. To this end, we show how additional data knowledge can be integrated into the models. The additional data str
17#
發(fā)表于 2025-3-24 13:38:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:14:47 | 只看該作者
https://doi.org/10.1007/978-3-322-83403-4ss of the approach for the detection and differential diagnosis of Primary Aldosteronism (PA), which has been addressed in a recent retrospective study. Here, we mainly present results for the application of the prototype based Generalized Matrix Relevance Learning Vector Quantization for the classi
19#
發(fā)表于 2025-3-24 23:00:12 | 只看該作者
https://doi.org/10.1007/978-3-322-83403-4es include variants of Self Organizing Maps in the unsupervised setting or variants of Learning Vector Quantization in the supervised one). The prototype based formulations make such models intuitive and naturally amenable to interpretation. I will present a series of generalizations and extensions
20#
發(fā)表于 2025-3-25 02:19:33 | 只看該作者
Gruppenarbeit in der industriellen Praxis,gree to which the process of VQ distorts the representation of this density, and the theoretical efficiency of estimators of these densities. In our analysis, . theory from kernel density estimation relates the number of VQ prototypes to observed sample size, dimension, and complexity, all of which
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 21:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永平县| 聂拉木县| 镇原县| 文登市| 阳泉市| 微山县| 合阳县| 鹿邑县| 双鸭山市| 鱼台县| 永城市| 锡林浩特市| 济南市| 民勤县| 宁陵县| 石屏县| 尚义县| 江孜县| 华池县| 十堰市| 青岛市| 墨脱县| 甘孜| 河北区| 淅川县| 马鞍山市| 昭苏县| 罗田县| 宁陕县| 凯里市| 安仁县| 三门峡市| 常山县| 景洪市| 大厂| 津南区| 大洼县| 大兴区| 鹿邑县| 九龙城区| 达州市|