找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and ; Proceedings of the 1 Thomas Villmann,

[復(fù)制鏈接]
查看: 54418|回復(fù): 65
樓主
發(fā)表于 2025-3-21 18:31:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and
期刊簡稱Proceedings of the 1
影響因子2023Thomas Villmann,Marika Kaden,Frank-Michael Schleif
視頻videohttp://file.papertrans.cn/168/167311/167311.mp4
發(fā)行地址 Provides recent research in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization.Presents computational aspects and applications for data mining and visualization.Con
學(xué)科分類Lecture Notes in Networks and Systems
圖書封面Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and ; Proceedings of the 1 Thomas Villmann,
影響因子.The book presents the peer-reviewed contributions of the 15th International Workshop on Self-Organizing Maps, Learning Vector Quantization and Beyond (WSOM$+$ 2024), held at the University of Applied Sciences Mittweida (UAS Mitt-weida), Germany, on July 10–12, 2024..The book highlights new developments in the field of interpretable and explainable machine learning for classification tasks, data compression and visualization. Thereby, the main focus is on prototype-based methods with inherent interpretability, computational sparseness and robustness making them as favorite methods for advanced machine learning tasks in a wide variety of applications ranging from biomedicine, space science, engineering to economics and social sciences, for example. The flexibility and simplicity of those approaches also allow the integration of modern aspects such as deep architectures, probabilistic methods and reasoning as well as relevance learning. The book reflects both new theoretical aspects in this research area and interesting application cases.??? ?.Thus, this book is recommended for researchers and practitioners in data analytics and machine learning, especially those who are interested i
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 影響因子(影響力)




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 影響因子(影響力)學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 網(wǎng)絡(luò)公開度




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 被引頻次




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 被引頻次學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 年度引用




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 年度引用學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 讀者反饋




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and 讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:34:04 | 只看該作者
Gruppenarbeit in der industriellen Praxis,gree to which the process of VQ distorts the representation of this density, and the theoretical efficiency of estimators of these densities. In our analysis, . theory from kernel density estimation relates the number of VQ prototypes to observed sample size, dimension, and complexity, all of which intuitively influence codebook sizing.
地板
發(fā)表于 2025-3-22 06:03:39 | 只看該作者
Thomas Villmann,Marika Kaden,Frank-Michael Schleif Provides recent research in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization.Presents computational aspects and applications for data mining and visualization.Con
5#
發(fā)表于 2025-3-22 09:30:57 | 只看該作者
6#
發(fā)表于 2025-3-22 15:50:31 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:35:28 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:47 | 只看該作者
Dieter Sandner Dipl.-Psych. M. A. to retrieve required data from the site. The planning task is to find a cost-efficient data collection plan to retrieve data from all the stations. For a fixed-wing aerial vehicle flying with a constant forward velocity, the problem is to determine the shortest feasible path that visits every sensi
10#
發(fā)表于 2025-3-23 08:57:41 | 只看該作者
Dieter Sandner Dipl.-Psych. M. A. min-max-prototypes. These prototypes can be identified with hyperboxes in the data space. Keeping the general GLVQ cost function, we redefine the Hebb-responsibilities for min-max-prototypes and derive consistent learning rules for stochastic gradient descent learning. We demonstrate that the resul
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台东市| 个旧市| 宜黄县| 龙游县| 阳江市| 姜堰市| 岑巩县| 修文县| 深圳市| 商城县| 东辽县| 广州市| 贺兰县| 浪卡子县| 旬阳县| 达孜县| 田东县| 平陆县| 靖江市| 威远县| 宣威市| 磐石市| 腾冲县| 阿拉善右旗| 和田县| 南召县| 麦盖提县| 蕉岭县| 柏乡县| 成武县| 玉溪市| 城市| 绥中县| 阿鲁科尔沁旗| 新沂市| 定边县| 突泉县| 余江县| 北海市| 科尔| 措勤县|