找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復(fù)制鏈接]
樓主: necrosis
31#
發(fā)表于 2025-3-27 00:53:10 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:21 | 只看該作者
Derivatives of L-Series at s = 0,ned, especially for certain types of characters [6; II, III, IV]. It is appropriate to present a paper on this subject here since it was at the Tata Institute that the complex quadratic case was treated in the lectures of Siegel [4] and later work of Ramachandra [3]. It has become clear in recent ye
34#
發(fā)表于 2025-3-27 11:04:05 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:14 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:23 | 只看該作者
,War and Controversy: 1940–1945,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
37#
發(fā)表于 2025-3-28 00:16:44 | 只看該作者
38#
發(fā)表于 2025-3-28 05:11:53 | 只看該作者
Sabine Bollig,Sabrina G?bel,Angelika Sichmas of Eisenstein series, and L. is the continuous part of the spectrum, given by integrals of Eisenstein series. If . is a function of compact support or of sufficiently rapid decay on G, then convolution with . defines an endomorphism T. of L.(.G), and the kernel function ..
39#
發(fā)表于 2025-3-28 08:10:24 | 只看該作者
A Remark on Zeta Functions of Algebraic Number Fields,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
40#
發(fā)表于 2025-3-28 11:05:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆山市| 东阳市| 沛县| 双峰县| 聂拉木县| 莱西市| 宜兰县| 丘北县| 泰州市| 隆子县| 梅河口市| 南宫市| 紫阳县| 土默特左旗| 琼结县| 鲁山县| 镇康县| 霍林郭勒市| 泽州县| 临泉县| 达州市| 东丰县| 盐源县| 志丹县| 兴隆县| 文安县| 政和县| 西平县| 加查县| 北碚区| 上林县| 开远市| 凤凰县| 乐平市| 饶阳县| 临泽县| 当雄县| 洞口县| 封开县| 枣阳市| 恩施市|