找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復(fù)制鏈接]
樓主: necrosis
11#
發(fā)表于 2025-3-23 10:11:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:29 | 只看該作者
https://doi.org/10.1007/978-1-4899-6683-4G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
14#
發(fā)表于 2025-3-23 22:54:18 | 只看該作者
The Transport of Acid PollutionOur starting point is a very general question. Let Γ be an arithmetic subgroup of a reductive Lie group G.. Then the group T acts on the symmetric space X = G./K. where K. ? G. is a maximal compact subgroup.
15#
發(fā)表于 2025-3-24 03:46:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:30 | 只看該作者
Strategies for Reducing Acid RainSuppose . is a modular cusp form with Fourier expansion:
17#
發(fā)表于 2025-3-24 14:11:38 | 只看該作者
,On Shimura’s Correspondence for Modular Forms of Half-Integral Weight,G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
18#
發(fā)表于 2025-3-24 14:54:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:33 | 只看該作者
,On P-ADIC Representations Associated with ?p -Extensions,. paper, we shall discuss some results on the p-adic representations of Galois groups, associated with so-called cyclotomic ?.-extensions of finite algebraic number fields.
20#
發(fā)表于 2025-3-25 01:19:27 | 只看該作者
Dirichlet Series for the Group GL(N),Suppose . is a modular cusp form with Fourier expansion:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北安市| 平陆县| 宜兰市| 滨海县| 白玉县| 正定县| 侯马市| 家居| 洛浦县| 卢氏县| 宁阳县| 武强县| 资中县| 松江区| 江安县| 曲松县| 石台县| 林西县| 鹤峰县| 夏邑县| 凯里市| 津南区| 五大连池市| 靖宇县| 泸溪县| 昭觉县| 琼海市| 玉树县| 闸北区| 鄂托克旗| 重庆市| 应用必备| 垣曲县| 庄浪县| 西贡区| 沙河市| 静乐县| 灵寿县| 镇巴县| 岗巴县| 谢通门县|