找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms; Research in Number T Bernhard Heim,Mehiddin Al-Baali,Florian Rupp Conference proceedings 2014 Springer International Pub

[復制鏈接]
樓主: 投射技術
51#
發(fā)表于 2025-3-30 09:14:46 | 只看該作者
Intersections of Two Walls of the Gottschling Fundamental Domain of the Siegel Modular Group of GenIf one has a chance to see the classical books of Fricke-Klein on modular functions of one variable, which were written one hundred years ago, one can find many beautiful pictures of fundamental domains bounded by geodesic lines with respect to the invariant hyperbolic metric in the complex upper half plane ..
52#
發(fā)表于 2025-3-30 12:51:54 | 只看該作者
Nonvanishing of ,-Functions Associated to Cusp Forms of Half-Integral Weight,In this article, we prove nonvanishing results for .-functions associated to holomorphic cusp forms of half-integral weight on average (over an orthogonal basis of Hecke eigenforms). This extends a result of W. Kohnen [4] to forms of half-integral weight.
53#
發(fā)表于 2025-3-30 19:24:39 | 只看該作者
54#
發(fā)表于 2025-3-30 20:42:15 | 只看該作者
55#
發(fā)表于 2025-3-31 02:48:18 | 只看該作者
2194-1009 at German University of Technology in Oman in February 2012..This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 “International Conference on Au
56#
發(fā)表于 2025-3-31 07:10:51 | 只看該作者
Fuzzy Controllers In Goguen Categories,d a generalization of parts of Bruinier’s result. We obtain recursion formulas for the Fourier-Jacobi coefficients of a Borcherds lift. Hence we have a direct link between Fourier-Jacobi coefficients and divisors.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 14:46
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鹿泉市| 大城县| 乌拉特中旗| 梁平县| 青阳县| 吕梁市| 勐海县| 忻州市| 西昌市| 阜阳市| 瓮安县| 灵璧县| 黑河市| 景泰县| 南乐县| 虎林市| 化州市| 甘孜| 涡阳县| 荆门市| 陇川县| 康保县| 遂宁市| 桂林市| 娱乐| 盐城市| 固始县| 临夏市| 黔南| 绥中县| 中山市| 个旧市| 巴彦淖尔市| 泽州县| 兴化市| 东丰县| 永宁县| 涞源县| 黄山市| 清丰县| 海安县|