找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms; Research in Number T Bernhard Heim,Mehiddin Al-Baali,Florian Rupp Conference proceedings 2014 Springer International Pub

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 07:13:55 | 只看該作者
https://doi.org/10.1007/978-1-4020-6164-6ic forms of rank .?=?2. with determinant a perfect square such that all newforms of level . can be written as linear combinations of theta series attached to lattices from that genus (.?>?4). Later on it was shown [.] that the statement above is true for . genera of lattices of precise level . provi
22#
發(fā)表于 2025-3-25 09:17:58 | 只看該作者
Categories Of L-Fuzzy Relations,s of our results are also valid for vector-valued modular forms. In our approach to .-adic Siegel modular forms we follow Serre [18] closely; his proofs however do not generalize to the Siegel case or need some modifications.
23#
發(fā)表于 2025-3-25 15:00:46 | 只看該作者
Fuzzy Controllers In Goguen Categories,495, 2000) as a generalization of the cyclic duadic codes. For a prime power . and an abelian group . of order . such that gcd(.,?.)?=?1, consider the group algebra . of . over the dual group .. of .. We prove that every ideal code in . whose extended code is Hermitian self-dual is a split group cod
24#
發(fā)表于 2025-3-25 19:06:23 | 只看該作者
https://doi.org/10.1007/978-1-4020-6164-6special cases .?=?.. and .. In this case we can show that the pullback is an embedding and we study the dependency on the choice of .. Combining this with earlier results of Krieg, we can define a family of index-raising operators ..?→?.. for all ., which interpolate the operators . defined by Eichl
25#
發(fā)表于 2025-3-25 21:10:16 | 只看該作者
Fuzzy Controllers In Goguen Categories,Bruinier, proving that meromorphic automorphic forms . on the orthogonal group .?=?.(2,?. + 2) with special divisor are Borcherds lifts. Holomorphic automorphic forms on . are Borcherds lifts if and only if they have a certain symmetry property. This leads to several applications. Special divisors (
26#
發(fā)表于 2025-3-26 01:07:36 | 只看該作者
Fuzzy Controllers In Goguen Categories,Borcherds that .. is a Borcherds lift (multiplicative lift) and by Maass that it is a Saito–Kurokawa lift (additive lift). In this paper we show that these two properties characterize the Igusa modular form. By Bruinier, Siegel modular forms of genus 2 with Heegner divisor are Borcherds products. He
27#
發(fā)表于 2025-3-26 06:51:01 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:38 | 只看該作者
Going Amiss in Experimental Research to construct Borcherds lifts. The approach used in this paper is based on work of V. Gritsenko and V. Nikulin (compare [8]). In section 3, we will go into more detail on the paramodular group of level 3. We will determine the characters and divisors on this group. Section 4 deals with weakly Jacobi
29#
發(fā)表于 2025-3-26 14:56:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:21 | 只看該作者
Bernhard Heim,Mehiddin Al-Baali,Florian RuppPresents research on number theory and automorphic forms presented at the Inaugural Conference on Modern Number Theory and Its Applications at German University of Technology in Oman in February 2012.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大余县| 隆子县| 张掖市| 淮北市| 闽清县| 阜新| 桓台县| 馆陶县| 张家口市| 元氏县| 襄樊市| 牡丹江市| 栾城县| 东兰县| 冀州市| 平果县| 大厂| 安国市| 宜城市| 剑阁县| 抚松县| 宿州市| 信阳市| 余庆县| 札达县| 同德县| 潼南县| 保亭| 明星| 峨边| 北京市| 大同县| 正蓝旗| 依安县| 句容市| 浦东新区| 青岛市| 许昌市| 东明县| 乳山市| 灵宝市|