找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio Source Separation; Shoji Makino Book 2018 Springer International Publishing AG 2018 audio source separation methods.non-negative mat

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 03:58:44 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:29 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaitherthe recent noise reduction study, it was found that optimized iterative spectral subtraction (SS) results in speech enhancement with almost no musical noise generation, but this method is valid only for stationary noise. The method presented in this chapter consists of iterative blind dynamic noise
23#
發(fā)表于 2025-3-25 12:11:45 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4 by a single microphone and by a video camera. We address the problem of separating a particular sound source from all other sources focusing specifically on obtaining an underlying representation of it while attenuating all other sources. By pointing the video camera merely to the desired sound sou
24#
發(fā)表于 2025-3-25 19:31:50 | 只看該作者
https://doi.org/10.1007/978-3-319-73031-8audio source separation methods; non-negative matrix factorization (NMF); deep neural networks (DNN) f
25#
發(fā)表于 2025-3-25 21:01:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:10:52 | 只看該作者
27#
發(fā)表于 2025-3-26 07:35:11 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:47 | 只看該作者
29#
發(fā)表于 2025-3-26 12:48:53 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaitherhe training data and usage scenario. We present also how semi-supervised learning can be used to deal with unknown noise sources within a mixture and finally we introduce a coupled NMF method which can be used to model large temporal context while retaining low algorithmic latency.
30#
發(fā)表于 2025-3-26 18:22:47 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaithernally, we present its application to a speech enhancement task and a music separation task. The experimental results show the benefit of the multichannel DNN-based approach over a single-channel DNN-based approach and the multichannel nonnegative matrix factorization based iterative EM framework.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余庆县| 渝北区| 壤塘县| 沭阳县| 德庆县| 巫溪县| 福建省| 彰武县| 宜兰市| 屏东县| 永春县| 富宁县| 龙泉市| 泸州市| 商都县| 武冈市| 神木县| 建昌县| 平江县| 吉木萨尔县| 桃园市| 大庆市| 郑州市| 得荣县| 五家渠市| 将乐县| 九寨沟县| 林西县| 长泰县| 嘉兴市| 兴化市| 余姚市| 奉贤区| 宜春市| 项城市| 惠东县| 宝应县| 漳州市| 永年县| 伊通| 萨迦县|