找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio Source Separation; Shoji Makino Book 2018 Springer International Publishing AG 2018 audio source separation methods.non-negative mat

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 12:49:26 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaither training material is available in advance. We first present the basic NMF formulation for sound mixtures and then present criteria and algorithms for estimating the model parameters. We introduce selected methods for training the NMF source models by using either vector quantisation, convexity cons
12#
發(fā)表于 2025-3-23 15:48:28 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4ral information, instead focusing on resolving each incoming spectrum independently. In this chapter we will present some methods that learn to incorporate the temporal aspects of sounds and use that information to perform improved separation. We will show three such models, a conlvolutive model tha
13#
發(fā)表于 2025-3-23 18:31:04 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4ensions are introduced within a more general local Gaussian modeling (LGM) framework. These methods are very attractive since allow combining spatial and spectral cues in a joint and principal way, but also are natural extensions and generalizations of many single-channel NMF-based methods to the mu
14#
發(fā)表于 2025-3-24 00:42:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:56 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaithers (IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art technique that utilizes the statistical independence between source vectors. However, since the source model in IVA is based on a spherically symmetric multivariate distribution, IVA cannot utilize the characteristics of s
16#
發(fā)表于 2025-3-24 07:02:44 | 只看該作者
17#
發(fā)表于 2025-3-24 13:28:30 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaither More computationally demanding approaches tend to produce better results, but often not fast enough to be deployed in practical systems. For example, as opposed to the iterative separation algorithms using source-specific dictionaries, a Deep Neural Network (DNN) performs separation via an iteratio
18#
發(fā)表于 2025-3-24 16:34:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:55:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天镇县| 肇州县| 邵阳市| 璧山县| 大庆市| 固阳县| 保康县| 卓尼县| 南京市| 永泰县| 本溪市| 和龙市| 谢通门县| 会理县| 双牌县| 山东省| 汝阳县| 枝江市| 宁城县| 韩城市| 安乡县| 恩平市| 广水市| 松原市| 民丰县| 汤阴县| 兰考县| 耒阳市| 永德县| 枞阳县| 永济市| 江门市| 灵武市| 庐江县| 宜州市| 长治县| 邵阳县| 达州市| 农安县| 和硕县| 泰来县|