找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio Source Separation; Shoji Makino Book 2018 Springer International Publishing AG 2018 audio source separation methods.non-negative mat

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 12:49:26 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaither training material is available in advance. We first present the basic NMF formulation for sound mixtures and then present criteria and algorithms for estimating the model parameters. We introduce selected methods for training the NMF source models by using either vector quantisation, convexity cons
12#
發(fā)表于 2025-3-23 15:48:28 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4ral information, instead focusing on resolving each incoming spectrum independently. In this chapter we will present some methods that learn to incorporate the temporal aspects of sounds and use that information to perform improved separation. We will show three such models, a conlvolutive model tha
13#
發(fā)表于 2025-3-23 18:31:04 | 只看該作者
https://doi.org/10.1007/978-0-387-49577-4ensions are introduced within a more general local Gaussian modeling (LGM) framework. These methods are very attractive since allow combining spatial and spectral cues in a joint and principal way, but also are natural extensions and generalizations of many single-channel NMF-based methods to the mu
14#
發(fā)表于 2025-3-24 00:42:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:56 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaithers (IVA) and nonnegative matrix factorization (NMF). IVA is a state-of-the-art technique that utilizes the statistical independence between source vectors. However, since the source model in IVA is based on a spherically symmetric multivariate distribution, IVA cannot utilize the characteristics of s
16#
發(fā)表于 2025-3-24 07:02:44 | 只看該作者
17#
發(fā)表于 2025-3-24 13:28:30 | 只看該作者
Carl C. Gaither,Alma E. Cavazos-Gaither More computationally demanding approaches tend to produce better results, but often not fast enough to be deployed in practical systems. For example, as opposed to the iterative separation algorithms using source-specific dictionaries, a Deep Neural Network (DNN) performs separation via an iteratio
18#
發(fā)表于 2025-3-24 16:34:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:55:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
精河县| 西昌市| 延庆县| 玛纳斯县| 大厂| 西林县| 衡山县| 洪雅县| 宣威市| 绥江县| 普格县| 广宗县| 外汇| 兴海县| 万源市| 吉首市| 安福县| 湖州市| 和顺县| 天气| 天等县| 丰都县| 松阳县| 曲沃县| 车险| 襄垣县| 辰溪县| 廉江市| 临猗县| 潞西市| 丽水市| 鹤庆县| 绵阳市| 东方市| 苏尼特右旗| 灌阳县| 读书| 定南县| 观塘区| 会昌县| 锦州市|