找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model; Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer

[復(fù)制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 11:25:50 | 只看該作者
12#
發(fā)表于 2025-3-23 14:55:13 | 只看該作者
0921-3767 es, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..978-3-319-81499-5978-3-319-33379-3Series ISSN 0921-3767 Series E-ISSN 2352-3905
13#
發(fā)表于 2025-3-23 21:00:11 | 只看該作者
Book 2016 of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..
14#
發(fā)表于 2025-3-24 02:13:12 | 只看該作者
Asymptotic Expansion of a Partition Function Related to the Sinh-model
15#
發(fā)表于 2025-3-24 05:10:45 | 只看該作者
,Asymptotic Expansion of ,—The Schwinger–Dyson Equation Approach,inally, upon integrating the relation (.) so as to to interpolate the partition function between a Gaussian and a general potential, we will get the .-dependent large-. asymptotic expansion of . in Proposition?..
16#
發(fā)表于 2025-3-24 07:02:09 | 只看該作者
,The Riemann–Hilbert Approach to the Inversion of ,,n of this vector problem demands the resolution of a . matrix Riemann–Hilbert problem for an auxiliary matrix .. We construct the solution to this problem, for .-large enough, in Section . and then exhibit some of the overall properties of the solution . in Section .. We shall build on these results
17#
發(fā)表于 2025-3-24 12:37:14 | 只看該作者
The Operators , ,ection . we shall build on this decomposition so as to show that there arise two regimes for the large-. asymptotic behaviour of . namely when.In addition to providing the associated asymptotic expansions, we shall also establish certain properties of the remainders which will turn out to be crucial
18#
發(fā)表于 2025-3-24 17:00:02 | 只看該作者
19#
發(fā)表于 2025-3-24 19:50:05 | 只看該作者
20#
發(fā)表于 2025-3-24 23:47:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼关县| 舒城县| 北宁市| 东方市| 辛集市| 萨迦县| 监利县| 郎溪县| 陵川县| 丰都县| 乌拉特中旗| 合肥市| 浏阳市| 克山县| 论坛| 隆回县| 襄垣县| 三亚市| 佳木斯市| 行唐县| 许昌市| 囊谦县| 蒙山县| 怀柔区| 合山市| 平昌县| 黔东| 金湖县| 梧州市| 屯昌县| 揭西县| 巍山| 辽宁省| 阜康市| 临猗县| 龙泉市| 方城县| 新余市| 泰安市| 繁峙县| 永丰县|