找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model; Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer

[復(fù)制鏈接]
查看: 52125|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:00:49 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Asymptotic Expansion of a Partition Function Related to the Sinh-model
影響因子2023Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski
視頻videohttp://file.papertrans.cn/164/163800/163800.mp4
發(fā)行地址Combines tools from potential theory, large deviations, Schwinger-Dyson equations, and Riemann-Hilbert techniques, and presents them in the same framework.Derives all concepts and results from scratch
學(xué)科分類Mathematical Physics Studies
圖書封面Titlebook: Asymptotic Expansion of a Partition Function Related to the Sinh-model;  Ga?tan Borot,Alice Guionnet,Karol K. Kozlowski Book 2016 Springer
影響因子This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields..
Pindex Book 2016
The information of publication is updating

書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model影響因子(影響力)




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model影響因子(影響力)學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model網(wǎng)絡(luò)公開度




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model被引頻次




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model被引頻次學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model年度引用




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model年度引用學(xué)科排名




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model讀者反饋




書目名稱Asymptotic Expansion of a Partition Function Related to the Sinh-model讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:24:40 | 只看該作者
,The Riemann–Hilbert Approach to the Inversion of ,, we introduce the singular integral operator ..This operator is a regularisation of the operator . in the sense that, formally, .. This regularisation enables to set a well defined associated Riemann–Hilbert problem, and is such that, once all calculations have been done and the inverse of . constru
地板
發(fā)表于 2025-3-22 05:36:03 | 只看該作者
5#
發(fā)表于 2025-3-22 09:34:25 | 只看該作者
6#
發(fā)表于 2025-3-22 13:32:56 | 只看該作者
0921-3767 same framework.Derives all concepts and results from scratchThis book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables.
7#
發(fā)表于 2025-3-22 18:14:20 | 只看該作者
8#
發(fā)表于 2025-3-23 00:23:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:08 | 只看該作者
10#
發(fā)表于 2025-3-23 06:00:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐乡市| 四平市| 普定县| 寿光市| 加查县| 汕尾市| 休宁县| 福海县| 三台县| 吉安县| 都兰县| 金华市| 河池市| 邢台市| 青阳县| 宾川县| 怀仁县| 炉霍县| 青冈县| 扎囊县| 理塘县| 雷波县| 南开区| 鄢陵县| 吉安县| 进贤县| 始兴县| 伊吾县| 苏尼特左旗| 武平县| 乌兰察布市| 张掖市| 张家港市| 明水县| 岫岩| 白玉县| 太仓市| 永济市| 海城市| 内丘县| 涿鹿县|