找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復(fù)制鏈接]
樓主: VER
61#
發(fā)表于 2025-4-1 04:36:49 | 只看該作者
62#
發(fā)表于 2025-4-1 07:36:42 | 只看該作者
,Relationale und differentielle Serialit?t,he proposed method is compared with reservoir computing methods with normal neurons and leaky integrator neurons by solving four kinds of regression and classification problems with time-series data. As a result, the proposed method shows superior results in all of problems.
63#
發(fā)表于 2025-4-1 13:13:18 | 只看該作者
https://doi.org/10.1007/978-3-642-47931-1t we can learn compact encoders that, despite the relatively small number of parameters, reach high-level performances in downstream tasks, comparing them with related state-of-the-art approaches or with fully supervised methods.
64#
發(fā)表于 2025-4-1 14:22:10 | 只看該作者
Practical Fractional-Order Neuron Dynamics for Reservoir Computinghe proposed method is compared with reservoir computing methods with normal neurons and leaky integrator neurons by solving four kinds of regression and classification problems with time-series data. As a result, the proposed method shows superior results in all of problems.
65#
發(fā)表于 2025-4-1 21:33:25 | 只看該作者
An Unsupervised Character-Aware Neural Approach to Word and Context Representation Learningt we can learn compact encoders that, despite the relatively small number of parameters, reach high-level performances in downstream tasks, comparing them with related state-of-the-art approaches or with fully supervised methods.
66#
發(fā)表于 2025-4-1 23:18:05 | 只看該作者
Verfassungsrechtliche Problemstellungn in that time step. Finally, the values of the survival function are linearly combined to compute the unique risk score. Thanks to the model structure and the training designed to exploit two loss functions, our model gets better concordance index (C-index) than the state of the art approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古浪县| 明星| 芜湖县| 西华县| 土默特右旗| 敦煌市| 凤翔县| 当阳市| 武陟县| 景宁| 乌鲁木齐市| 罗甸县| 东源县| 久治县| 平舆县| 互助| 桃园县| 保定市| 历史| 安多县| 鄂尔多斯市| 祁东县| 陇南市| 深泽县| 吴江市| 永安市| 嘉荫县| 都昌县| 漯河市| 东辽县| 兰溪市| 深泽县| 永城市| 麻城市| 邯郸县| 内丘县| 东莞市| 蓬溪县| 阳朔县| 广平县| 滁州市|