找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復制鏈接]
查看: 42157|回復: 65
樓主
發(fā)表于 2025-3-21 19:21:48 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning – ICANN 2018
期刊簡稱27th International C
影響因子2023Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni
視頻videohttp://file.papertrans.cn/163/162643/162643.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe
影響因子.This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27.th. International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018...The papers presented in these volumes was carefully reviewed and selected from? total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detecti
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018影響因子(影響力)學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018網(wǎng)絡(luò)公開度學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018被引頻次




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018被引頻次學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018年度引用




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018年度引用學科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018讀者反饋




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2018讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:34:45 | 只看該作者
地板
發(fā)表于 2025-3-22 06:18:09 | 只看該作者
0302-9743 Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detecti978-3-030-01423-0978-3-030-01424-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
5#
發(fā)表于 2025-3-22 12:15:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:24 | 只看該作者
7#
發(fā)表于 2025-3-22 19:38:41 | 只看該作者
A RNN-Based Multi-factors Model for Repeat Consumption Prediction behavior, and found that the MF-RNN gets better performance than non-factor RNN. Besides, we analyzed the differences in consumption behaviors between different cities and different regions in China.
8#
發(fā)表于 2025-3-23 01:13:54 | 只看該作者
Neural Model for the Visual Recognition of Animacy and Social Interactionture. For the generation of training data we propose a novel algorithm that is derived from dynamic human navigation models, and which allows to generate arbitrary numbers of abstract social interaction stimuli by self-organization.
9#
發(fā)表于 2025-3-23 01:38:33 | 只看該作者
Wolfgang Hoffmann-Riem,Stefan Engelsng problems. In particular, we consider settings of partial observability and leverage the short-term memory capabilities of echo state networks (ESNs) to learn parameterized control policies. Using SPSA, we propose three different variants to adapt the weight matrices of an ESN to the task at hand.
10#
發(fā)表于 2025-3-23 06:02:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
罗源县| 惠来县| 民勤县| 黔西县| 闻喜县| 塔城市| 商丘市| 佛教| 伊吾县| 仪征市| 嘉黎县| 阜城县| 突泉县| 新巴尔虎左旗| 青海省| 霍邱县| 南安市| 绥宁县| 鹤峰县| 新丰县| 临朐县| 化德县| 年辖:市辖区| 东源县| 建湖县| 塘沽区| 花莲县| 衡阳县| 高安市| 辽中县| 新泰市| 蓬安县| 阆中市| 耿马| 德兴市| 天镇县| 华容县| 云南省| 韩城市| 桓台县| 乡宁县|