找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence. ECAI 2023 International Workshops; XAI^3, TACTIFUL, XI- S?awomir Nowaczyk,Przemys?aw Biecek,Vania Dimitrov Confere

[復制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 16:47:55 | 只看該作者
42#
發(fā)表于 2025-3-28 19:11:52 | 只看該作者
A. M. Gaines,B. A. Peterson,O. F. Mendoza models by generating human-understandable explanations. The existing literature encompasses a diverse range of techniques, each relying on specific theoretical assumptions and possessing its own advantages and disadvantages. Amongst the available choices, hypercube-based SKE techniques are notable
43#
發(fā)表于 2025-3-29 01:11:57 | 只看該作者
Analog weight adaptation hardware,and potential of interpretable machine learning, in particular PIP-Net, for automated diagnosis support on real-world medical imaging data. PIP-Net learns human-understandable prototypical image parts and we evaluate its accuracy and interpretability for fracture detection and skin cancer diagnosis.
44#
發(fā)表于 2025-3-29 06:08:45 | 只看該作者
The Vector Decomposition Method,hods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information th
45#
發(fā)表于 2025-3-29 08:37:15 | 只看該作者
https://doi.org/10.1007/978-3-319-76864-9is paper focuses on using model-based trees as surrogate models which partition the feature space into interpretable regions via decision rules. Within each region, interpretable models based on additive main effects are used to approximate the behavior of the black box model, striking for an optima
46#
發(fā)表于 2025-3-29 11:51:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:18:06 | 只看該作者
48#
發(fā)表于 2025-3-29 23:10:12 | 只看該作者
49#
發(fā)表于 2025-3-30 01:47:37 | 只看該作者
Artificial Intelligence. ECAI 2023 International Workshops978-3-031-50396-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
50#
發(fā)表于 2025-3-30 06:57:44 | 只看該作者
https://doi.org/10.1007/978-3-031-50396-2Artificial Intelligence; Machine Learning; Multi-Agent Systems; Reliability of Artificial Intelligence;
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
正镶白旗| 阿尔山市| 涡阳县| 鄄城县| 胶南市| 南溪县| 余庆县| 大埔区| 长沙县| 磐安县| 庐江县| 松原市| 长武县| 韩城市| 德州市| 桦南县| 富宁县| 宜宾县| 陆川县| 疏勒县| 新和县| 石首市| 承德市| 景谷| 应城市| 孙吴县| 沙湾县| 西昌市| 延寿县| 怀来县| 安岳县| 尤溪县| 泽普县| 五原县| 永和县| 弥渡县| 河津市| 大渡口区| 桦甸市| 慈利县| 周至县|