找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence. ECAI 2023 International Workshops; XAI^3, TACTIFUL, XI- S?awomir Nowaczyk,Przemys?aw Biecek,Vania Dimitrov Confere

[復(fù)制鏈接]
樓主: 與生
11#
發(fā)表于 2025-3-23 13:36:57 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:24:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:15:24 | 只看該作者
Temporal Saliency Detection Towards Explainable Transformer-Based Timeseries Forecastingllenge, especially towards explainability. Focusing on commonly used saliency maps in explaining DNN in general, our quest is to build attention-based architecture that can automatically encode saliency-related temporal patterns by establishing connections with appropriate attention heads. Hence, th
15#
發(fā)表于 2025-3-24 05:07:34 | 只看該作者
Explaining Taxi Demand Prediction Models Based on?Feature Importanceem, which is difficult due to its multivariate input and output space. As these models are composed of multiple layers, their predictions become opaque. This opaqueness makes debugging, optimising, and using the models difficult. To address this, we propose the usage of eXplainable AI (XAI) – featur
16#
發(fā)表于 2025-3-24 09:11:46 | 只看該作者
Bayesian CAIPI: A Probabilistic Approach to?Explanatory and?Interactive Machine Learningart algorithm, captures the user feedback and iteratively biases a data set toward a correct decision-making mechanism using counterexamples. The counterexample generation procedure relies on hand-crafted data augmentation and might produce implausible instances. We propose Bayesian CAIPI that embed
17#
發(fā)表于 2025-3-24 13:02:21 | 只看該作者
18#
發(fā)表于 2025-3-24 14:49:30 | 只看該作者
A. M. Gaines,B. A. Peterson,O. F. Mendoza augment the predictive capabilities of hypercube-based SKE techniques, striving for a completeness rate of 100%. Furthermore, the study includes experiments that assess the effectiveness of the proposed enhancements.
19#
發(fā)表于 2025-3-24 20:40:38 | 只看該作者
https://doi.org/10.1007/978-3-319-76864-9 ability to generate such surrogate models. We investigate fidelity, interpretability, stability, and the algorithms’ capability to capture interaction effects through appropriate splits. Based on our comprehensive analyses, we finally provide an overview of user-specific recommendations.
20#
發(fā)表于 2025-3-25 02:48:41 | 只看該作者
https://doi.org/10.1007/978-3-319-76321-7where we distinguish ones from sevens, we show that Bayesian CAIPI matches the predictive accuracy of both, traditional CAIPI and default deep learning. Moreover, it outperforms both in terms of explanation quality.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸市| 大竹县| 绥滨县| 洛浦县| 旺苍县| 左云县| 上蔡县| 赫章县| 江孜县| 集贤县| 绥棱县| 阿拉善盟| 双城市| 平利县| 和硕县| 黔江区| 陈巴尔虎旗| 高青县| 宝山区| 株洲市| 吉安市| 柳江县| 桑植县| 弋阳县| 枣庄市| 大邑县| 定安县| 明星| 通辽市| 井冈山市| 岳池县| 仲巴县| 环江| 宽甸| 静宁县| 梨树县| 吐鲁番市| 兰州市| 吐鲁番市| 达日县| 社旗县|