找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Radiation Therapy; First International Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat

[復(fù)制鏈接]
樓主: 空隙
31#
發(fā)表于 2025-3-26 22:51:01 | 只看該作者
Automatically Tracking and Detecting Significant Nodal Mass Shrinkage During Head-and-Neck Radiatio harmful radiation dose. In an institutional IRB-approved protocol, patients were monitored with weekly T2-weighted MRIs. Gross tumor volumes (GTV) from pre-treatment MRI were propagated to weekly MRIs via deformable image registrations (DIR) for tracking the change of GTV nodal volume and detection
32#
發(fā)表于 2025-3-27 04:29:00 | 只看該作者
4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network,cycle. It can provide valuable information on the shapes and trajectories of tumor and normal structures to guide treatment planning and improve the accuracy of tumor delineation. Respiration-induced abdominal tissue motion causes significant problems in effective irradiation of abdominal cancer pat
33#
發(fā)表于 2025-3-27 07:45:48 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:49 | 只看該作者
A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN andd visualization of prostate tissues and lesions. Their malignancy can be diagnosed before any necessary invasive approaches, such as needle biopsy, at the risk of damage to or inflammation of the periprostatic nerves, prostate and bladder neck. However, the prostate tissue malignancy on magnetic res
35#
發(fā)表于 2025-3-27 17:26:02 | 只看該作者
A Novel Deep Learning Framework for Standardizing the Label of OARs in CT,ich severely hampers the collection and curation of clinical data for research purpose. Currently, data cleaning is mainly done manually, which is time-consuming. The existing methods for automatically relabeling OARs remain unpractical with real patient data, due to the inconsistent delineation and
36#
發(fā)表于 2025-3-27 20:42:34 | 只看該作者
37#
發(fā)表于 2025-3-27 23:23:06 | 只看該作者
Voxel-Level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions,d protecting surrounding organs at risk (OARs). Automatic dose prediction can reduce manual adjustments by providing close to optimal radiotherapy planning parameters, which is studied in this work. We developed a voxel-level dose prediction framework based on an end-to-end trainable densely-connect
38#
發(fā)表于 2025-3-28 03:18:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:01:14 | 只看該作者
One-Dimensional Convolutional Network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Raditherapy treatment plans. Automatic DVH prediction is therefore very use-ful to achieve high-quality esophageal treatment planning. This paper studied stacked denoise auto-encoder (SDAE) to compute correlation between DVH and distance to target histogram (DTH) based on the fact that the geometric inf
40#
發(fā)表于 2025-3-28 11:31:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布尔津县| 盈江县| 碌曲县| 保康县| 宝应县| 涞源县| 枣阳市| 剑河县| 湛江市| 裕民县| 孝昌县| 大姚县| 西城区| 察哈| 乐都县| 日照市| 洱源县| 若羌县| 乌恰县| 靖远县| 枣庄市| 吴川市| 安仁县| 桂阳县| 中牟县| 锦州市| 张北县| 天津市| 新竹市| 四平市| 乌兰察布市| 曲阜市| 东源县| 台山市| 丹东市| 桐梓县| 合阳县| 望谟县| 潜江市| 莒南县| 宜兴市|