找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Radiation Therapy; First International Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat

[復制鏈接]
查看: 9651|回復: 62
樓主
發(fā)表于 2025-3-21 18:04:23 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence in Radiation Therapy
期刊簡稱First International
影響因子2023Dan Nguyen,Lei Xing,Steve Jiang
視頻videohttp://file.papertrans.cn/163/162516/162516.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence in Radiation Therapy; First International  Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat
影響因子.This book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019..The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life..
Pindex Conference proceedings 2019
The information of publication is updating

書目名稱Artificial Intelligence in Radiation Therapy影響因子(影響力)




書目名稱Artificial Intelligence in Radiation Therapy影響因子(影響力)學科排名




書目名稱Artificial Intelligence in Radiation Therapy網(wǎng)絡公開度




書目名稱Artificial Intelligence in Radiation Therapy網(wǎng)絡公開度學科排名




書目名稱Artificial Intelligence in Radiation Therapy被引頻次




書目名稱Artificial Intelligence in Radiation Therapy被引頻次學科排名




書目名稱Artificial Intelligence in Radiation Therapy年度引用




書目名稱Artificial Intelligence in Radiation Therapy年度引用學科排名




書目名稱Artificial Intelligence in Radiation Therapy讀者反饋




書目名稱Artificial Intelligence in Radiation Therapy讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:40:22 | 只看該作者
Automatically Tracking and Detecting Significant Nodal Mass Shrinkage During Head-and-Neck Radiatio symmetry in calculating image saliency of MRI images. The ratio of mean saliency value (RSal) from the propagated nodal volume on a weekly image to the mean saliency value of the pre-treatment nodal volume was calculated to assess whether the nodal volume shrank significantly. We evaluated our meth
板凳
發(fā)表于 2025-3-22 03:45:40 | 只看該作者
地板
發(fā)表于 2025-3-22 08:19:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:28:51 | 只看該作者
A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN andod for . prostate lesion detection and classification, using input sequences of T2-weighted images, apparent diffusion coefficient (ADC) maps and high b-value diffusion-weighted images. In the first stage, a Mask R-CNN model is trained to automatically segment prostate structures. In the second stag
6#
發(fā)表于 2025-3-22 16:41:36 | 只看該作者
7#
發(fā)表于 2025-3-22 17:57:27 | 只看該作者
Voxel-Level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions,absolute error of dose volume histogram (DVH) and voxel-based mean absolute error were used to evaluate the prediction accuracy, with [0.9%, 1.9%] at PGTV, [1.1%, 2.8%] at PTV, [2.8%, 4.4%] at Lung, [3.5%, 6.9%] at Heart, [4.2%, 5.6%] at Spinal Cord, and [1.7%, 4.8%] at Body. These encouraging resul
8#
發(fā)表于 2025-3-23 01:05:04 | 只看該作者
Online Target Volume Estimation and Prediction from an Interlaced Slice Acquisition - A Manifold Emures as targets. Locally linear embedding (LLE) was combined with manifold alignment to establish correspondence across slice positions. Multislice target contours were generated using a LLE-based motion model for each real-time image. Motion predictions were performed using a weighted k-nearest nei
9#
發(fā)表于 2025-3-23 02:47:36 | 只看該作者
One-Dimensional Convolutional Network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Raditwork (one-DCN) is used for the correlation modeling. This model can predict the DVH of multiple OARs based on the individual patient’s geometry without manual removal of radiation plans with outliers. The average prediction error of the measurement focusing on the left lung, right lung, heart, spin
10#
發(fā)表于 2025-3-23 08:23:23 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 09:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石嘴山市| 高青县| 北宁市| 太仓市| 特克斯县| 麻栗坡县| 中牟县| 上饶市| 西吉县| 新兴县| 鲜城| 宁德市| 红河县| 武邑县| 兴业县| 溧阳市| 神农架林区| 湖口县| 江永县| 灵台县| 保定市| 乌拉特中旗| 陆川县| 冷水江市| 根河市| 平度市| 灵宝市| 黄龙县| 抚宁县| 石城县| 松溪县| 固始县| 建平县| 巨鹿县| 渭源县| 沁源县| 平武县| 常德市| 樟树市| 濉溪县| 博罗县|