找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Radiation Therapy; First International Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 06:26:34 | 只看該作者
https://doi.org/10.1007/978-981-13-1715-6absolute error of dose volume histogram (DVH) and voxel-based mean absolute error were used to evaluate the prediction accuracy, with [0.9%, 1.9%] at PGTV, [1.1%, 2.8%] at PTV, [2.8%, 4.4%] at Lung, [3.5%, 6.9%] at Heart, [4.2%, 5.6%] at Spinal Cord, and [1.7%, 4.8%] at Body. These encouraging resul
22#
發(fā)表于 2025-3-25 08:47:36 | 只看該作者
23#
發(fā)表于 2025-3-25 14:39:12 | 只看該作者
Rajalakshmi Sriram,Rituparna Sarkartwork (one-DCN) is used for the correlation modeling. This model can predict the DVH of multiple OARs based on the individual patient’s geometry without manual removal of radiation plans with outliers. The average prediction error of the measurement focusing on the left lung, right lung, heart, spin
24#
發(fā)表于 2025-3-25 18:40:15 | 只看該作者
Prachee Joeg,Sneha Joshi,Rajalakshmi Sriramired brain dataset. The resulting CT scans were generated with the mean absolute error (MAE), the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) scores of 60.83?HU, 17.21?dB, and 0.8, respectively. DualGAN with perceptual loss function term and coordinate convolutional layer
25#
發(fā)表于 2025-3-25 23:40:45 | 只看該作者
Men as Fathers: An Indian Perspectivetion. Qualitative measurements have showed analogous dose distributions and DVH curves compared to the true dose distribution. Quantitative measurements have demonstrated that our model can precisely predict the dose distribution with various trade-offs for different patients, with the largest mean
26#
發(fā)表于 2025-3-26 02:22:57 | 只看該作者
27#
發(fā)表于 2025-3-26 06:16:48 | 只看該作者
28#
發(fā)表于 2025-3-26 09:02:58 | 只看該作者
Fathers, Caregiving and Social Change CBCT to MRI, which constrains the model by forcing a one-to-one mapping. A fully convolution neural network (FCN) with U-Net architecture is used in the generator to enable end-to-end CBCT-to-MRI transformations. Dense blocks and self-attention strategy are used to learn the information to well rep
29#
發(fā)表于 2025-3-26 13:37:48 | 只看該作者
Using Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Rg suboptimal and inefficient solutions. Column generation (CG) has been shown to produce superior plans compared to those of human selected beams, especially in highly non-coplanar plans such as 4π Radiotherapy. In this work, we applied AI to explore the decision space of beam orientation selection.
30#
發(fā)表于 2025-3-26 17:26:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶绥县| 金门县| 三门县| 嘉黎县| 额尔古纳市| 长阳| 句容市| 鲁甸县| 定南县| 清涧县| 古丈县| 镇宁| 石家庄市| 阳信县| 嵩明县| 肇州县| 汕尾市| 巴中市| 泾源县| 余姚市| 云和县| 青阳县| 民权县| 大悟县| 确山县| 夏津县| 晋江市| 普陀区| 灌南县| 安远县| 宁乡县| 汝南县| 宁河县| 工布江达县| 高安市| 饶河县| 南汇区| 民勤县| 铜川市| 龙岩市| 南涧|