找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Cybersecurity; Mark Stamp,Corrado Aaron Visaggio,Fabio Di Troia Book 2022 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: Hypothesis
21#
發(fā)表于 2025-3-25 05:40:22 | 只看該作者
Mark Stamp,Corrado Aaron Visaggio,Fabio Di TroiaPresents new and novel applications for AI technology within the context of cybersecurity.Explores and conquers issues and obstacles that the AI field is tackling within the context of cybersecurity.T
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
Advances in Information Securityhttp://image.papertrans.cn/b/image/162364.jpg
23#
發(fā)表于 2025-3-25 15:01:09 | 只看該作者
https://doi.org/10.1007/978-1-349-15821-8samples. While the AC-GAN generated images often appear to be very similar to real malware images, we conclude that from a deep learning perspective, the AC-GAN generated samples do not rise to the level of deep fake malware images.
24#
發(fā)表于 2025-3-25 17:43:10 | 只看該作者
https://doi.org/10.1007/978-3-031-40419-1ation algorithms, we used and compared Support Vector Machines (SVM), Logistic Regression, Random Forests, and Multi-Layer Perceptron (MLP). We found that the classification accuracy obtained by the word embeddings generated by BERT is effective in detecting malware samples, and superior in accuracy when compared to the ones created by Word2Vec.
25#
發(fā)表于 2025-3-25 20:17:04 | 只看該作者
26#
發(fā)表于 2025-3-26 01:11:22 | 只看該作者
BERT for Malware Classificationation algorithms, we used and compared Support Vector Machines (SVM), Logistic Regression, Random Forests, and Multi-Layer Perceptron (MLP). We found that the classification accuracy obtained by the word embeddings generated by BERT is effective in detecting malware samples, and superior in accuracy when compared to the ones created by Word2Vec.
27#
發(fā)表于 2025-3-26 08:15:41 | 只看該作者
28#
發(fā)表于 2025-3-26 11:58:56 | 只看該作者
Assessing the Robustness of an Image-Based Malware Classifier with Smali Level Perturbations Techniqtector and evaluate its resilience when morphed samples are considered. The experiments were conducted on 16384 real-world Android Malware, and the experimental analysis demonstrates that standard image-based malware classifiers are vulnerable to simple perturbations attacks.
29#
發(fā)表于 2025-3-26 15:41:13 | 只看該作者
30#
發(fā)表于 2025-3-26 17:53:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内丘县| 盐亭县| 龙泉市| 札达县| 万山特区| 安阳县| 阿图什市| 阜新市| 开原市| 石泉县| 崇州市| 江西省| 视频| 绥江县| 平遥县| 高州市| 东光县| 广宗县| 巩留县| 江津市| 连城县| 广水市| 怀集县| 若羌县| 凉山| 右玉县| 三穗县| 财经| 丰都县| 安化县| 确山县| 八宿县| 安溪县| 玉田县| 马公市| 汝南县| 灌云县| 龙胜| 舞阳县| 丽水市| 福建省|