找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Cybersecurity; Mark Stamp,Corrado Aaron Visaggio,Fabio Di Troia Book 2022 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 37426|回復(fù): 51
樓主
發(fā)表于 2025-3-21 20:04:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence for Cybersecurity
影響因子2023Mark Stamp,Corrado Aaron Visaggio,Fabio Di Troia
視頻videohttp://file.papertrans.cn/163/162364/162364.mp4
發(fā)行地址Presents new and novel applications for AI technology within the context of cybersecurity.Explores and conquers issues and obstacles that the AI field is tackling within the context of cybersecurity.T
學(xué)科分類Advances in Information Security
圖書(shū)封面Titlebook: Artificial Intelligence for Cybersecurity;  Mark Stamp,Corrado Aaron Visaggio,Fabio Di Troia Book 2022 The Editor(s) (if applicable) and Th
影響因子.This book explores new and novel applications of machine learning, deep learning, and artificial intelligence that are related to major challenges in the field of cybersecurity. The provided research goes beyond simply applying AI techniques to datasets and instead delves into deeper issues that arise at the interface between deep learning and cybersecurity..This book also provides insight into the difficult "how" and "why" questions that arise in AI within the security domain. For example, this book includes chapters covering "explainable AI", "adversarial learning", "resilient AI", and a wide variety of related topics. It’s not limited to any specific cybersecurity subtopics and the chapters touch upon a wide range of cybersecurity domains, ranging from malware to biometrics and more..Researchers and advanced level students working and studying in the fields of cybersecurity (equivalently, information security) or artificial intelligence (including deep learning, machine learning, big data, and related fields) will want to purchase this book as a reference. Practitioners working within these fields will also be interested in purchasing this book..
Pindex Book 2022
The information of publication is updating

書(shū)目名稱Artificial Intelligence for Cybersecurity影響因子(影響力)




書(shū)目名稱Artificial Intelligence for Cybersecurity影響因子(影響力)學(xué)科排名




書(shū)目名稱Artificial Intelligence for Cybersecurity網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Artificial Intelligence for Cybersecurity網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Artificial Intelligence for Cybersecurity被引頻次




書(shū)目名稱Artificial Intelligence for Cybersecurity被引頻次學(xué)科排名




書(shū)目名稱Artificial Intelligence for Cybersecurity年度引用




書(shū)目名稱Artificial Intelligence for Cybersecurity年度引用學(xué)科排名




書(shū)目名稱Artificial Intelligence for Cybersecurity讀者反饋




書(shū)目名稱Artificial Intelligence for Cybersecurity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:47:12 | 只看該作者
地板
發(fā)表于 2025-3-22 04:49:47 | 只看該作者
https://doi.org/10.1007/978-1-349-15821-8ieving state-of-the-art results in many areas, it also has drawbacks exploited by many with white-box attacks. Although the white-box scenario is possible in malware detection, the detailed structure of antivirus is often unknown. Consequently, we focused on a pure black-box setup where no informati
5#
發(fā)表于 2025-3-22 10:05:31 | 只看該作者
6#
發(fā)表于 2025-3-22 12:58:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:28:31 | 只看該作者
https://doi.org/10.1007/978-3-642-35822-7ich uniquely distinguishes it from other typical malware threats. The C&C server sends commands to the botnets to execute malicious activities using common Internet protocols, such as Hypertext transfer (HTTP), and Internet Relay Chat (IRC). Since these protocols are common, detecting botnet activit
8#
發(fā)表于 2025-3-23 00:05:17 | 只看該作者
Class D Results and Simulations,r hand, the results can be hard to understand as to why a model classified a given file as malicious or benign. This paper focuses on the interpretability of machine learning models’ results using decision lists generated by two rule-based classifiers, I-REP and RIPPER. We use the EMBER dataset, whi
9#
發(fā)表于 2025-3-23 03:09:46 | 只看該作者
Class D Results and Simulations,ntrol the propagation in mobile devices. According to Damballa’s Q4 State of Infections report, the antivirus products overlooked 70% of malware signatures within the first hour (Q4 2014 State of Infections Report. Q4 2014 state of infections report. ., accessed August 2021). This is despite the fac
10#
發(fā)表于 2025-3-23 07:01:38 | 只看該作者
https://doi.org/10.1007/978-3-031-40419-1gs generated by BERT. We extract the “words” directly from the malware samples to achieve multi-class classification. In fact, the attention mechanism of a pre-trained BERT model can be used in malware classification by capturing information about the relation between each opcode and every other opc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 宁陵县| 嵩明县| 信阳市| 孝义市| 大同县| 清流县| 神池县| 成安县| 民和| 双城市| 正蓝旗| 泗洪县| 钟祥市| 梧州市| 巨野县| 闻喜县| 马边| 乌苏市| 定安县| 荥阳市| 武城县| 抚远县| 三台县| 卓尼县| 海林市| 永顺县| 旬邑县| 余姚市| 承德市| 普兰店市| 湟中县| 南华县| 崇信县| 布尔津县| 临海市| 阳新县| 醴陵市| 汨罗市| 河北省| 略阳县|