找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復(fù)制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:44:55 | 只看該作者
Oracle Database 11, Architecturet two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
12#
發(fā)表于 2025-3-23 14:45:53 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0be paired with the cohomology classes of complete subvarieties of the moduli space to give classical Siegel modular forms with higher Noether–Lefschetz numbers as Fourier coefficients. Examples of such complete families associated to quadratic spaces over totally real number fields are constructed.
13#
發(fā)表于 2025-3-23 21:37:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0surfaces are characterized among Enriques surfaces by the group action by . with prescribed topological type of fixed point loci. As an application, we construct Mathieu type actions by the groups . and .. Two introductory sections are also included.
14#
發(fā)表于 2025-3-24 01:52:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:40 | 只看該作者
A Structure Theorem for Fibrations on Delsarte Surfacest two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
16#
發(fā)表于 2025-3-24 07:35:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:36:05 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:47 | 只看該作者
https://doi.org/10.1007/978-1-4614-6403-7$K3$ surfaces and Enriques surfaces; Calabi-Yau manifolds; cycles and subschemes; variation of Hodge st
19#
發(fā)表于 2025-3-24 21:09:41 | 只看該作者
978-1-4899-9918-4Springer Science+Business Media New York 2013
20#
發(fā)表于 2025-3-25 01:53:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤阴县| 枞阳县| 伊吾县| 纳雍县| 济宁市| 日喀则市| 密云县| 漠河县| 师宗县| 蕉岭县| 莱阳市| 江都市| 芮城县| 澄江县| 米林县| 德兴市| 梅河口市| 玉田县| 海晏县| 成武县| 武安市| 昭通市| 漯河市| 宁陵县| 日土县| 海盐县| 松江区| 武定县| 普格县| 土默特左旗| 和林格尔县| 车险| 会昌县| 福州市| 西充县| 元氏县| 永安市| 陕西省| 屯昌县| 临漳县| 潜山县|