找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復(fù)制鏈接]
查看: 27092|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:44:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds
影響因子2023Radu Laza,Matthias Schütt,Noriko Yui
視頻videohttp://file.papertrans.cn/162/161609/161609.mp4
發(fā)行地址Surveys the very active field of Calabi-Yau varieties from a geometric and arithmetic perspective.Includes four introductory lectures that can be used by graduate students and other researchers as a g
學(xué)科分類Fields Institute Communications
圖書封面Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds;  Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business
影響因子.In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on? Arithmetic and Geometry of? K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated..?.Unlike most other conferences, the 2011 Calabi–Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate stu
Pindex Book 2013
The information of publication is updating

書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds影響因子(影響力)




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds影響因子(影響力)學(xué)科排名




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds網(wǎng)絡(luò)公開度




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds被引頻次




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds被引頻次學(xué)科排名




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds年度引用




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds年度引用學(xué)科排名




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds讀者反饋




書目名稱Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:16:47 | 只看該作者
地板
發(fā)表于 2025-3-22 06:52:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:34:29 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:50 | 只看該作者
7#
發(fā)表于 2025-3-22 18:28:53 | 只看該作者
8#
發(fā)表于 2025-3-22 22:09:51 | 只看該作者
9#
發(fā)表于 2025-3-23 02:14:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:49 | 只看該作者
Expert Oracle Database 10g Administrationalized higher cycles due to Bloch that are connected to higher .-theory, and associated regulators. Finally, we specialize to the Calabi–Yau situation, and explain some recent developments in the field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扬中市| 西乌| 仙桃市| 达拉特旗| 肃南| 苗栗县| 沙田区| 富蕴县| 波密县| 沈阳市| 灵宝市| 临漳县| 麻江县| 称多县| 抚州市| 中宁县| 镇安县| 东辽县| 乳山市| 六枝特区| 宜章县| 霍林郭勒市| 寻乌县| 三原县| 莫力| 隆子县| 乌兰察布市| 石阡县| 麻江县| 琼结县| 宝鸡市| 县级市| 桃源县| 保康县| 白玉县| 西乡县| 潜江市| 霍州市| 深水埗区| 双流县| 易门县|