找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry over Global Function Fields; Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Textbook 2014 Springer Basel 2014 Drin

[復(fù)制鏈接]
查看: 48487|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:03:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Arithmetic Geometry over Global Function Fields
影響因子2023Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc
視頻videohttp://file.papertrans.cn/162/161596/161596.mp4
發(fā)行地址Includes a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell–We
學(xué)科分類Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Arithmetic Geometry over Global Function Fields;  Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc  Textbook 2014 Springer Basel 2014 Drin
影響因子This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture,
Pindex Textbook 2014
The information of publication is updating

書目名稱Arithmetic Geometry over Global Function Fields影響因子(影響力)




書目名稱Arithmetic Geometry over Global Function Fields影響因子(影響力)學(xué)科排名




書目名稱Arithmetic Geometry over Global Function Fields網(wǎng)絡(luò)公開度




書目名稱Arithmetic Geometry over Global Function Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arithmetic Geometry over Global Function Fields被引頻次




書目名稱Arithmetic Geometry over Global Function Fields被引頻次學(xué)科排名




書目名稱Arithmetic Geometry over Global Function Fields年度引用




書目名稱Arithmetic Geometry over Global Function Fields年度引用學(xué)科排名




書目名稱Arithmetic Geometry over Global Function Fields讀者反饋




書目名稱Arithmetic Geometry over Global Function Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:48 | 只看該作者
Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields,ts and discussed some open problems regarding the gamma and zeta functions in the function field context. The first four lectures of these notes, dealing with gamma, roughly correspond to the first four lectures of one and half hour each, and the last three lectures, dealing with zeta, cover the las
板凳
發(fā)表于 2025-3-22 02:02:06 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:36 | 只看該作者
5#
發(fā)表于 2025-3-22 09:10:28 | 只看該作者
6#
發(fā)表于 2025-3-22 15:16:07 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:31 | 只看該作者
8#
發(fā)表于 2025-3-22 23:05:25 | 只看該作者
2297-0304 its geometric analogues, and the construction of Mordell–WeThis volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the
9#
發(fā)表于 2025-3-23 05:25:00 | 只看該作者
10#
發(fā)表于 2025-3-23 06:37:15 | 只看該作者
Arithmetic Geometry over Global Function Fields978-3-0348-0853-8Series ISSN 2297-0304 Series E-ISSN 2297-0312
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余庆县| 东源县| 阿尔山市| 习水县| 阜新| 孝昌县| 北流市| 宁都县| 和静县| 蕉岭县| 尚志市| 南华县| 鱼台县| 东台市| 灵武市| 武隆县| 勃利县| 望都县| 马山县| 阿坝| 砚山县| 郸城县| 松桃| 襄汾县| 邛崃市| 馆陶县| 于都县| 昌乐县| 油尖旺区| 宜章县| 库尔勒市| 松潘县| 大化| 石台县| 揭阳市| 浦北县| 嘉义市| 金门县| 高州市| 盈江县| 新兴县|