找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry over Global Function Fields; Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Textbook 2014 Springer Basel 2014 Drin

[復(fù)制鏈接]
樓主: 街道
11#
發(fā)表于 2025-3-23 11:05:19 | 只看該作者
Expert Apache Cassandra Administrationin results on curves and their Jacobians over function fields, with emphasis on the group of rational points of the Jacobian, and to explain various constructions of Jacobians with large Mordell–Weil rank.
12#
發(fā)表于 2025-3-23 14:24:01 | 只看該作者
https://doi.org/10.1007/978-3-0348-0853-8Drinfeld modules; Gamma functions; L-functions; Zeta and Multizeta functions; cohomology theory; t-motive
13#
發(fā)表于 2025-3-23 21:52:17 | 只看該作者
Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Includes a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell–We
14#
發(fā)表于 2025-3-24 01:09:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:18:44 | 只看該作者
https://doi.org/10.1007/978-1-4302-4951-1This lecture series introduces in the first part a cohomological theory for varieties in positive characteristic with finitely generated rings of this characteristic as coefficients developed jointly with Richard Pink. In the second part various applications are given.
16#
發(fā)表于 2025-3-24 07:01:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:58 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:38 | 只看該作者
On Geometric Iwasawa Theory and Special Values of Zeta Functions,Having succumbed to the requests of the organisers of the Research Programme on Function Field Arithmetic that was held in 2010 at the CRM in Barcelona, we present here a survey of some recent results concerning certain aspects of the Iwasawa theory of varieties over finite fields.
19#
發(fā)表于 2025-3-24 21:18:09 | 只看該作者
20#
發(fā)表于 2025-3-24 23:56:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五华县| 宜宾市| 松桃| 昌邑市| 郑州市| 南城县| 穆棱市| 武鸣县| 齐齐哈尔市| 霍林郭勒市| 浏阳市| 安吉县| 刚察县| 和顺县| 宜良县| 临安市| 泾阳县| 双鸭山市| 伊宁县| 宝山区| 乡城县| 冷水江市| 迁西县| 崇义县| 简阳市| 五家渠市| 沈丘县| 三台县| 岐山县| 博爱县| 长宁县| 东兴市| 榕江县| 甘孜县| 牡丹江市| 鹰潭市| 葫芦岛市| 兴和县| 鹤岗市| 东丽区| 张家口市|