找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques; 14th International W Leslie Ann Goldberg,Klaus Jan

[復(fù)制鏈接]
樓主: 與生
51#
發(fā)表于 2025-3-30 12:10:11 | 只看該作者
52#
發(fā)表于 2025-3-30 13:46:42 | 只看該作者
53#
發(fā)表于 2025-3-30 17:01:25 | 只看該作者
Opaque Setse barrier is restricted to the interior and the boundary of the input polygon, then the problem admits a fully polynomial-time approximation scheme for the connected case and a quadratic-time exact algorithm for the single-arc case. These are the first approximation algorithms obtained for this problem.
54#
發(fā)表于 2025-3-30 23:12:54 | 只看該作者
On Capacitated Set Cover Problemsitated problem is closely related to that of the uncapacitated version. We also give related lower bounds, and show that the hereditary property is necessary to obtain non-trivial results. Finally, we give some results for capacitated covering problems on set systems with low hereditary discrepancy and low VC dimension.
55#
發(fā)表于 2025-3-31 03:59:55 | 只看該作者
56#
發(fā)表于 2025-3-31 05:58:52 | 只看該作者
57#
發(fā)表于 2025-3-31 09:21:36 | 只看該作者
58#
發(fā)表于 2025-3-31 16:11:54 | 只看該作者
59#
發(fā)表于 2025-3-31 19:11:47 | 只看該作者
https://doi.org/10.1007/BFb0113620r the competitive ratio, and a strategy that achieves a ratio of 3; for different offline versions, we describe polynomial-time approximation schemes. For the MATP we show that no competitive ratio exists for the online problem, and give polynomial-time approximation schemes for offline versions.
60#
發(fā)表于 2025-3-31 23:05:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿鹿县| 绥滨县| 承德县| 饶阳县| 宜兴市| 沙洋县| 西畴县| 合作市| 崇明县| 西充县| 乳山市| 介休市| 甘孜| 盐池县| 临洮县| 会宁县| 高尔夫| 印江| 隆林| 格尔木市| 政和县| 武汉市| 繁峙县| 佛学| 鲁山县| 台南县| 南宫市| 霍城县| 衡阳县| 宁明县| 绥棱县| 文化| 双桥区| 萝北县| 冷水江市| 凌海市| 抚顺市| 北海市| 刚察县| 旌德县| 甘泉县|