找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques; 14th International W Leslie Ann Goldberg,Klaus Jan

[復(fù)制鏈接]
樓主: 與生
11#
發(fā)表于 2025-3-23 12:37:53 | 只看該作者
Robert Gaunt,J. J. Chart,A. A. Renziarak, Raghavendra, and Steurer on using Lasserre Hierarchy for unique games. The algorithm can also be used to show that known integrality gap instances for SDP relaxations like . cannot survive a few rounds of Lasserre lifting, which also seems reason for optimism..For . graphs of diameter Δ, we ca
12#
發(fā)表于 2025-3-23 16:32:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:05:12 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:46 | 只看該作者
J.T. EDSALL,U.S.V. EULER,E SCHEITZallocated items. The second mechanism is the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a fractional allocation that can be expressed as a convex combination of integral allocations. The welfare factor of a mechanism is the infimum over all instances. For RSD,
15#
發(fā)表于 2025-3-24 03:31:51 | 只看該作者
https://doi.org/10.1007/BFb0116990 We give a new primal-dual algorithm and a strengthened analysis that proves a so-called Lagrangian-preserving performance guarantee. In contrast to the results of Jain & Vazirani for the uncapacitated facility location and .-median problems, our results have the surprising property that our perform
16#
發(fā)表于 2025-3-24 07:05:29 | 只看該作者
17#
發(fā)表于 2025-3-24 10:56:43 | 只看該作者
18#
發(fā)表于 2025-3-24 18:21:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:57:11 | 只看該作者
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques978-3-642-22935-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
20#
發(fā)表于 2025-3-25 02:05:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜君县| 新昌县| 永兴县| 兰考县| 玉田县| 辰溪县| 平陆县| 珲春市| 黔西| 连南| 日照市| 阜新市| 噶尔县| 上栗县| 西乌| 吉安市| 昌平区| 冷水江市| 绥滨县| 江安县| 临安市| 瓮安县| 甘肃省| 河东区| 通化县| 社旗县| 纳雍县| 海淀区| 龙岩市| 仪陇县| 囊谦县| 吴桥县| 丽水市| 盱眙县| 浠水县| 天全县| 临夏市| 通州区| 乌鲁木齐县| 米泉市| 宜兰市|